S
S~

=
WIPO

BCEMWPHAR OPrAHWU3ALIMA
MHTENNEKTYANBHOWN
COBCTBEHHOCTH

CWS/7/5
OPUIMHAN: AHTNMACKUI
AATA: 20 MASI 2019 T.

KomuteT no cranpgaptam BOUC (KCB)

Cepbmasn ceccusi
XXeHeBa, 1 — 5 nrons 2019 r.

NPEANOXEHNE O PASPABOTKE CMNELUMNPUKALINL JSON

LokymeHm nodzomoeneH MexxdyHapoOHbiM 6t0po

BBEOEHVE

1. MexayHapogHoe Giopo obpaliaeT BHUMaHME Ha TO, YTO BEAOMCTBA MHTENMEKTyanbHOM
cobectBeHHocTH (BUC) HaunHaloT Bce akTuBHee ncnonb3oBaTb popmat JavaScript Object
Notation (JSON) ansa paccbinkn AaHHbIX, B TOM 4YMcne npy nomolum Beb-cepsucos. JSON — aTo
TEeKCTOBbIN hopmaTt obMeHa AaHHbIMKU, KOTOPbIN CYMTaETCs He TpeboBaTernbHbLIM K pecypcam,
0cobeHHO B cpaBHeHUn ¢ chopmatom XML. OpHako B HacTosiLee BpeMS He CyLLecTByeT
KaKoro-To o6LenpUHATOro oTpacneBoro ctaHaapTta paspadotkn JSON-cxeMbl.

2. Llenesas rpynna no XML gns MNC paccmaTpuBaeT BONpocC O LienecoodpasHocTH
npumeHeHus popmata JSON B kauecTBe OOMONHEHUS K cTaHAapTHeIM XML-cxemam,
KOTOpbIMKU 3aHMMaeTcs AaHHasda Llenesag rpynna, yxxe ¢ 2013 r. 'pynna obpaTtuna BHMMaHue
Ha T0, 4To JSON saBnsaeTcsa npegnodntaemolim hopmaTtoM obMeHa AaHHbIMU MeXAy 3asBKaMn n
Beb-cepBmcamm, B TO Bpemsl kKak XML — aTo npegnodntaemoln popmaTt obMeHa JOKyMeHTaMu
mexay Begomcteamum VIC n xpaHeHUst AOKyMeHTOB BegomMmcTBamu MC.

3. KomuteT no craHgaptam BOUC (KCB) Takke paccmatpmBan uenecoobpasHoCTb
ncnonb3oBaHust opmata JSON kak 04HOro M3 BO3MOXHbIX (hopMaToB A5 BEG-CEepBUCOB Mpu
nocrtaHoBke 3agaym Ne 56, koTopas umena uenbto:

«MoproToBMTb pekomMmeHaauumn no oMeHy AaHHbIMK, obecneymnBaroLme MeXXMaLUNHHYO
nepefavy AaHHbIX, yaenvs OCHOBHOE BHUMaHME:
— dhopmaty coobLeHnI, CTPYKTYpe AaHHbIX U cnoBapto gaHHbix B JSON n/nnn XML,
"
— cornatleHusiM 0 NPUCBOEHNN NMEH AN YHUPULNPOBAHHOMO naeHTugukatopa
pecypcoB (URI)».

CWS/7/5
cTp. 2

4. YunTbiBas BO3HMKaOLLME HOBblE NOTPEOGHOCTM U Ucnonb3oBaHue popmata JSON
BegomMmcTBamu VIC n npmeegeHHoe Bobiwe onucaHne 3agadm Ne 56, Lienesas rpynna no XML
ana MNC nogrotoBuna npoekT paboyero AoOKyMeHTa B OTHOLIEHMN HOBOro ctaHgapta BOVC Ha
AaHHble no NC, ansa koTopbix ncnonbadyetcs popmat JSON, npuBeAEHHbIV B BUAE NPUNOXKEHUSA
K HacTosiLeMy LOKYMeHTy. JTa npegBapuTenbHas cneundumkaumnsa obina paspaboTtaHa Ha
OCHOBE NMpeanoXeHns, BHeCeHHoro BeaomcTBOM no nateHTam n ToBapHbIM 3Hakam CLUA
(BMT3 CWA) n BbiHOCUTCA Ha paccmoTpeHne ceabmon ceccumn KCB, koToporn npeanaraetcs
npeacTaBvTb MO HEMY CBOW 3aMeYvaHusl.

PABOYN MPOEKT HOBOIO CTAHOAPTA JSON

5. Habop pekomeHOaumii, KOTOPbIN NpeacTaBnseT cobon pabounii NPOEKT, TECHO CBSI3aH CO
craHgaptom BOUC ST.96, Bkntovasi npaBuna NpucBOEHMS UMEH, BECbMa CXOXMNe C
npasunamu, onpegeneHHsiMn B MNMpunoxenun | kK ctangapty ST.96 («IMpaBuna n ycnoBHble
o603HayveHnsa ansarHa XML»). Llenesas rpynna no XML gns NC oTmevaeT BaXXHOCTb
obecneyveHunsa comecTumoctn mexay JSON-obbektamm n XML-AokymeHTamu 1 npeanaraet
MCnonb30BaTh TE XXe HanMeHOBaHNSA KOMMOHEHTOB, KOTOPbIE UCMONb3YIOTCA B CXeMe cTaHaapTa
ST.96, Kpome KOMMOHEHTOB, KOTOpbIE ByayT 3agaHbl B popmaTe Lower Camel Case ans
noeHtTndmrkaumm mx B kadectee JSON-06HEKTOB.

6. Crangapt BOVC ST.96 cOCTOUT N3 OCHOBHOIO TEKCTa U LLIECTU NPUNOXKEHUI. INocKonbKy
cogepxaHue cneumdukauum aHanormyHo cogepxanuto MNMpunoxenus | k ctaHgapty ST.96,
OKOH4YaTenbHbIN TeKCT cTaHaapTa JSON, no-engumomy, dyaeT cogepxaTb OonbLue
pekoMeHgaumMn — HanpuMmep, Npasuna 1 MHCTPYKUUK AN NPpakTUYeCcKon peanuaawmu,
nogobHble cogepxalwmmes B MNpunoxeHnn V k ctaHgapTy ST.96.

QObnacTtb AencTBKUA cTanHgapTa

7. Uenesas rpynna no XML gns NC cuntaeTt, 4TO AaHHbIV CTaHAAPT OOSDKEH coaepXaTb
pekomeHgaumu ans BUC n gpyrnx saaMHTepecoBaHHbIX CTOPOH, (DOPMUPYIOLLNX NN XPaHALLMX
OaHHble no NC ¢ ncnonb3osaHmem pecypcos JSON.

Llenb ctaHgapTa

8. LleneBagd rpynna cornacunacb ¢ TEM, YTO LieNb AaHHOro NpeaBapuTensHOro BapnaHTa
cTaHgapTa gommkHa 6biTb hopMynupoBka pekomeHgauun no coctasneHnio JSON-cxem,
NO3BONSAOLLNX ONTUMMU3MPOBaTb NPOLIECCHI MX NoaroToBku BegomcTBamm MC. XoTs aToT
pabounin NPOEKT HaXoaUTCA Ha pPaHHUX 3Tanax peanu3aumm, B HEM NpeanonaraeTcs co3gartb
eavHbin cnoeapb anst XML-cxem n JSON-cxeM, 4To Nno3BonuT nsberatb oIMGOK

B UMeHoBaHuW. Llenesag rpynna cTpeMuTCs paclumvpuTb 3Ty cneumduKauuio nyTem BKAYEHUS
B Hee JSON-CcxeMbl, N0 BO3MOXXHOCTW BbICTPOEHHOM C AaHHbIX aTOMapHOro YPOBHSI.

9. B yacTtHOCTW, OaHHbIA CTaHAapT NPU3BaH:

— cdopmynMpoBaTb pekoMeHAaLmMn No CTaHaapTu3aunm pasMeTkn AaHHbIX 4ns doopmaTta
JSON;

— obecneunTb egmHoobpasre npouenyp 3a cHeT BbipaboTKM NPUHLMMNOB NPOEKTUPOBaHNS
BbICOKOro ypoBHs aAnga popmata JSON;

— NOBbICUTb 3(PPEKTMBHOCTE OOMEHA AaHHbIMK 3a cHeT obecneyeHnsi NOBTOPHOro
ncnone3osaHuna pecypcos JSON npu o6meHe mexay BUNC, a Takke ny6nmyHo
NpeaocTaBnseMbIX aHHbIX; U

— cnocobcTBOBaTb CO BPEMEHEM MOBbLILLEHUIO MPOCTOThI UCNOMNBb30BaHUA U Ny4lLeMy
NOHMMaHMIO AaHHbIX Gnarogapst UX NOBTOPHOMY MCMOSTb30BaHMIO.

CTpykTypa cTaHgapTa

10. TlocnegHuii paboumni npoekT (paboyas Bepcus 0.1) COCTOUT M3 cnegyowmx NATN rae u
BBEAEHUS:

CWS/7/5
cTp. 3

— NPWHUMNbI UMEHOBAaHMWSA, OCHOBaHHbIE Ha NonoxeHusx ctaHgapta BONC ST.96;

— npaswuna npoektnpoBaHus JSON-cxembl (4Na caMmon CXeMbl);

— npaBuna NpoeKkTMpOoBaHNUsS CTPYKTYPHbIX arieMeHToB JSON-cxembl (415 06bekToB 1
TUNOB 06 HLEKTOB);

— wnaeHtndukatopbl JISON-cxembl: paspaboTka URI, onpegenstoLwiero MectoHaxoxaeHue
JSON-pecypca; n

— npasuna paspaboTtkn JSON-gokymeHTOoB: cTpykTypa JSON-gOKYyMEHTa 1
CyLLeCTBYIOLLME OrpaHUYeHns.

11. Kpome Toro, npeaycMoTpeHbl TPY OOMNOMHEHNS:

— [JononHeHne A: pag Tabnuy cooTBeTCTBUS Mexay komnoHeHTamn XML-cxem n JSON-
CXeM;

— [JononHeHune B: npyMmeHseMble yCnoBUSA penpeseHTaummn, To ecTb obLume Knaccbl 1 ux
BUAObl OTHOCALLMXCS K HUM JaHHbIX;

— [JononHeHne C: nepeyeHb CTaHOapPTHbIX COKpaLleHUn n abbpesmaTyp, KOTopble OOMKHbI
NCMOosb30BaTbCA BMECTO MOJSTHLIX TEPMUHOB.

MOCNEAQYOWEE OBCY>XOEHWE U PABOTA

12. B deBpane 2019 r. MexxgyHapoaHoe 6t0po opraHn3oBarno OHNanHOBOE COBELLIAHNE
Lleneeon rpynnel no XML gnsa MNC gnsa obeyxaeHnst npennoXeHus, NoaroToBEHHOIo
BegnomctBoM no nateHTam 1 ToBapHbIM 3Hakam CLUA. YneHbl rpynnbl 03HAaKOMUUCH C
npegsapuTenbHbIM NpeasioxkeHmem, npeacraBneHHbiM BeaoMcTBOM Mo nateHTaM 1 ToBapHbIM
3Hakam CLUA Ha coBewaHuu, coctosiBlemMcs B mapTe 2019 r. B Ceyne. [pynna npuHsana
pelueHne o paspabotke JSON-cxembl Ha 6a3e ctangapta BOMC ST.96 1 0 ToOM, 4TOObI Ha4aTb
paboTty ¢ XML-KOMNOHEHTOB NPOCTON CTPYKTYpPbl, TO €CTb C aTOMapHOro YPOBHS.

13. B craHgapte BOUC ST.96 onpeaeneHo npumepHo 1 800 komnoHeHToB XML-cxembl.
MexayHapoaHoe 6topo, B kavecTBe pykoBoauTens Lleneson rpynnsl no XML gns I1C,

B COTPYAHMYECTBE C YneHamu rpynnbl, 6yaeT ndydatb BapuaHThl pelleHmns, obneryatoLiero
npeobpasoBaHne XML-cxem, cooTBeTCTBYHOWMX cTaHgapTy BOMC ST.96, B JSON-cxemy.

14. Ueneas rpynna no XML ansa MNC npogomknt gopaboTKy NnpeaBapuTensHoOn
cneumdukaumm n nnaHa, 4Tobbl NPeacTaBUTb OKOHYATENbHOE NPEASIOKEHNE Ha PAaCCMOTPEHNE
BocbMou ceccun KCB.

15. KCB npednazaemcs:.

(@) npuHsMb K ceedeHuro
codepxaHue Hacmoswezo
00OKyMeHma;

(b) npedcmasume 3ameyaHus
rno paboyemy npoekmy crieyugukayuu
JSON;

(c) pekomeHdosamb YreHam
Komumema y4yacmeogams 8
obcyxdeHuu crneyugukayuu popmama
JSON u mecmupogaHuu JSON-cxembI
U Hanpasums ceou om3sbiebi Lleneesoli
epynne rno XML ons l1C; u

CWS/7/5
cTp. 4

(d) npocums Llenesyto epynny
o XML dns lC npedcmasums
OKOHYameJsibHoe rnpeodroxeHue Ha
paccmompeHue gocbmoli ceccuu KCB.

[MpunoxeHue cnenyeT]

CWS/7/5
NPUNOXXEHNE

WIPO STANDARD ST.XX

PROCESSING OF INTELLECTUAL PROPERTY INFORMATION USING JSON

JSON DESIGN RULES AND CONVENTIONS

Working Draft — version 0.1

Editorial Note — prepared by the International Bureau

This Working Dratft is prepared by the International Bureau and shared for information at the seventh session of the
CWS only in English. This Draft will be further updated in due course and the final draft will be submitted for
consideration by the CWS at its eighth session.

TABLE OF CONTENTS

WIPO STANDARD ST.XX
1. INTRODUCTION
2. DEFINITIONS AND TERMINOLOGY
3. GENERAL NOTATIONS

3.1 Rule Identifierscccvveeee...
3.2 Sample JSON Data Structure.
4, SCOPE....ccii ettt
5. JSON GENERAL DESIGN RULES ...ttt ettt sttt nbe e bttt e st sate e
5.1 OVBIVIBW ...eiieeiiiiee et e e e e e ettt et e e e e e ettt et e e e e s e sttt e e eeeeeeessssbeeeeeeeeeessseeeeeeee e e ssssaeeeaeeeeansssanaaaaeeaannssnneaaeeesnnnnnes
5.2 JSON Naming Conventions....
6. JSON SCHEMA DESIGN RULES
6.1 OVEIVIEW ...
6.2 Modularity
6.3 Documentation

6.4 File Name.......cccceviiiiennnen.
6.5 JSON schema Versioningeeeeeeeecveeeeeeeeesnnnnns
6.6 JSON Schema Document Properties Structuring ...
7. JSON SCHEMA CONSTRUCTS DESIGN RULES.
7.1 OVEBIVIBW ...ttt ettt ettt oottt oottt e ek et e ek et e ek b et e e e e b et e e e b et e e e abe e e e e bbbt e e bt et e e anbneaeabneeeane
7.2 L 0] 01T 1= PRSP
7.3 Type Definitions..........ccc.cc.....
7.4 JSON Primitive Type...............
7.5 Code Lists
7.6 Arrays.....ccccveeeees
7.7 ODbJECES ...veveveeiiiiiieieeee e
8 JSON SCHEMA IDENTIFIERS.........
8.1 Overview
8.2 ID versioning
9. INSTANCE DESIGN RULES..........
9.1 (@0 [T o) H = (0] o= =2 USSP PPPPRRIN
9.2 JSON instance validation
10. REFERENCES
11. APPENDICES ...ttt
11.1 Appendix A — Mapping XML schema to JSON schema
11.2 Appendix B — Representation TEMMS..........ceeeeeviiiiiiireeeeenninnns

11.3 Appendix C — List of Acronyms and ABDreViationscoooeiiiiiiiiiie e

CWS/7/5
MpunoxeHue, cTp. 2

1. INTRODUCTION

This draft standard provides recommendations for designing, creating or updating JavaScript Object Notation (JSON)
resources for use in filing, processing, exchanging or publishing all types of Intellectual Property (IP) data. This standard
considering the rules and conventions set out in WIPO Standard ST.96 — “Recommendation for the processing of
Industrial Property Information using XML (Extensible Markup Language)”.

This proposed purpose for this standard is to:

— Provide guidance on JSON data mark-up standardization;

— Ensure consistency by establishing design principles for JSON;

— Improve data exchange efficiency by promoting reuse of JSON resources among Intellectual Property Offices
(IPOs), as well as data provided to the public.

2. DEFINITIONS AND TERMINOLOGY
For purposes of the standard, the following terminology is used:

— theterm “JSON schema” refers to any language for describing the structure and constraining the contents of
JSON documents and the JSON schema Core, version draft-07, available at http://json-schema.org/latest/json-
schema-core.html. JSON schema version is subject to change because it has not achieved RFC status.; it has
not been adopted by an IETF Working Group. It should also noted that earlier drafts of JSON schema may not
be completely compatible.

— the term “schema” (alone) refers specifically to a JSON schema.

— atomic property names are the lowest level of granularity within the JSON Objects.

— In this document, "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" are to be interpreted as described in REC 2119. Non-capitalized forms of these words are used
in the regular English sense.

3. GENERAL NOTATIONS
The following notations are used throughout this document:

— <>! Indicates a placeholder descriptive term that, in implementation, will be replaced with a specific instance
value.

— “™ Indicates that the text included in quotes must be used verbatim in implementation.

— {} Indicates that the items are optional in implementation.

— Consolas font: Indicates JSON keywords, JSON property names.

3.1 Rule Identifiers
All design rules are normative. Design rules are identified through a prefix of [JXX nn].

— The value “JXX" is a prefix to categorize the type of rule as follows:

(@) JGD for general design rules
(b) JSD for schema design rules
(c) JCD for construct design rules

(d) JID for instance design rules

— The value “nn” indicates the next available number in the sequence of a specific rule type. It should be noted
that the number does not mean the position of the rule, in particular, for a new rule. A new rule will be placed
in the relevant context. For example, the rule identifier [JGD-10] identifies the tenth general design rule. The
rule [JGD-10] can be placed between rules [JGD-05] and [JGD-06] instead of following [JGD-09] if that is the
most appropriate location for this rule.

— The rule identifier of the deleted rule will be kept while the rule will be replaced with the text “Deleted”.

3.2 Sample JSON Data Structure

Sample JSON data structures appear within text boxes using a fixed-width font. Sample JSON data structure syntax are
highlighted for easier readability.

http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
https://www.ietf.org/rfc/rfc2119.txt

CWS/7/5
MpunoxeHue, ctp. 3

4. SCOPE

This standard aims to provide guidance to Intellectual Property Offices and other Organization that create or modify
Intellectual Property data as JSON resources. Compliance with this standard is required for data exchange between
IPOs using JSON.

This draft standard excludes the following:

(a) architectural concerns;
(b) implementation languages; and
(c) tools for producing JSON schema.

5. JSON GENERAL DESIGN RULES

5.1 Overview

This section contains general, high-level JSON design rules and guidelines that apply to all JSON data exchange and
JSON development efforts, rather than to a specific facet of JSON technology. The general rules and guidelines, listed
below, provide the common foundation for JISON document and JSON data structure development for all data to include
intellectual property (IP) data and non-IP data.

5.2 JSON Naming Conventions

These conventions are necessary to ensure consistency, uniformity, and comprehensiveness in the naming and defining
of all JISON resources.

These JSON naming conventions are based on the guidelines and principles described in document 1SO 11179 Part 5 -
Naming and Identification Principles.

The name of JSON properties consist of the following terms:

— Qualifier Term is a word or words which help define and differentiate a data element from other related data
elements and may be attached to an object class term or property term if necessary to make a name unique.

— Object Class refers to an activity or object within a business context and represents the logical data grouping or
aggregation (in a logical data model) to which a Property belongs. The Object Class is expressed by an Object
Class Term.

— Property/Attribute Term identifies characteristics of the Object Class.

— Representation Term categorizes the format of the data element into broad types. Representation Terms listed
in Appendix B to this document should be used for JSON Design Rules and Conventions Standard.

[JGD-01] Property names MUST be composed of words in the English language, using the primary English
spellings provided in the Oxford English Dictionary.

[JGD-02] Property names SHOULD consist only of nouns, adjectives, and verbs in the present tense.

[JGD-03] The characters used in property names MUST be contained in the following set: ‘a-z, A-Z and 0-9'.

[JGD-04] The maximum length of a property name SHOULD be no more than 35 characters.

[JGD-05] Property names MUST NOT contain consecutive redundant words.

[JGD-06] Property names SHOULD be concise and self-explanatory.

[JGD-07] Property names MUST use the lowerCamelCase (LCC) convention. For example,

"currencyCode":"EUR".

[JGD-08] The acronyms and abbreviations listed in Appendix C MUST always be used instead of the complete
extended name.

[JGD-09] Acronyms and abbreviations at the beginning of a property name MUST appear in all lower case. All
other acronym and abbreviation usage in a property name MUST appear in upper case in Appendix
C.

[JGD-10] A Property Term in a name MUST be unique within the context of an Object Class but MAY be

reused across different Object Classes.

https://www.iso.org/standard/60341.html

[JGD-11]

[JGD-12]

[JGD-13}

[JGD-14]

[JGD-15]

[JGD-16]

[JGD-17]

[JGD-18]

[JGD-19]

[JGD-20]

[JGD-21]

[JGD-22]

[JGD-23]

CWS/7/5
MpunoxeHwue, cTp. 4

A Qualifier Term MAY be attached to an Object Class Term or a Property Term if necessary to make
a name unique.

When a name contains an Object Class Term, a Property Term, and a Representation Term, the
Object Class Term MUST precede the Property Term and the Property Term MUST precede the
Representation Term.

A Qualifier Term SHOULD precede the associated Object Class Term or Property Term.

Example Listing

Employee Last Name — employeeLastName

Claims Total Quantity - claimTotalQuantity

Application Patent Case Filing Date - applicationPatentCaseFilingDate

Fiscal Year Budget Period Total Amount — fiscalYearBudgetPeriodTotalAmount

Note: the representational term is highlighted with bold font.

If the Property Term ends with the same word as the Representation Term (or an equivalent word)
then the Representation Term MUST be removed.

The Representation Terms in Appendix B MUST be used for atomic property names.

Word(s) in a property name SHOULD be in singular form unless the concept itself is plural. For
example: goodsServices, totalMarkSeries.

The name of a property which contains an array or a collection of contextually related components
SHOULD have the “plurality” representation in its name using “Bag”. For example, EmailAddressBag
represents a collection of EmailAddress properties

Connecting words like “and”, “of” and “the” SHOULD NOT be used in property names unless they are
part of the business terminology.

Property names MUST NOT be translated, changed or replaced for any purpose.
Property names MUST NOT refer to article and rule numbers. For example, PCT Article 34.

Collection resources that include collection-wide metadata (e.g. total number of items) should be
wrapped within a JSON object envelope. Custom HTTP headers MUST NOT be used for conveying
this metadata.

Levels of nesting SHOULD be kept to a minimum. Prefer inline values over having a values that are
single-property objects. For example, instead of "inventor": { "fullName": "Thomas Edison" },
"inventorFullName": "Thomas Edison" is preferred.

Names within the URL SHOULD be used to provide context for the data represented by JSON. Avoid
repeating terms within JSON that are implicitly understood based on the context.

CWS/7/5
MpunoxeHue, cTp. 5

For example, consider a resource http://patent-classification.uspto.gov/classifications/cpc with the following
representation:

"cpcClassificationBag"™ : [
{
"cpcClassification': {
“class" :@ ..
“subclass': ..
H
3.
{
"cpcClassification': {
"class'": .
"subclass": ..
H
E

]

Given that the URL makes it clear that the resource is a collection of classifications, specifically CPC classifications, the
property names are providing redundant information in this context. Thus, the JSON representation could be simplified
to:

L
{
"class'": .
“subclass'": .
X
{
"class'": .
"subclass'": .
}
6. JSON Schema Design Rules

6.1 Overview

The JSON schema describes the structure of the JSON instance, which expresses the constraints on the structure and
content of the document. Business users rely on IPO systems for well-defined JSON schema for data structure
validation and common vocabulary across systems. Every JSON schema is versioned to reduce the impact to systems
as a result of structural changes to an existing schema.

JSON schema documents should comply with the industry schema standard, JSON schema. The latest version
available at time of publishing this document is draft-0.7 and this draft standard refers to this version.

[JSD-01] JSON schema documents MUST conform to JSON schema specifications: JSON schema Core, version
draft-07, available at http://json-schema.org/latest/json-schema-core.html, and JSON schema Validation,
version draft-07, available at http://json-schema.org/latest/json-schema-validation.html.

[JSD-02] The schema document MUST indicate that they conform to version draft-07 of JSON schema using the
$schema keyword.

Example: Indicating the version of JSON schema

"$schema': "http://json-schema.org/draft-07/schema#"

The schema should be encoded using UTF-8 for maximum interoperability.

[JSD-03] JSON schemas MUST use the ISO/IEC 10646 — UCS — Unicode character set. UTF-8 MUST be used
for encoding Unicode characters.

6.2 Modularity

Modularity allows the creation of schema components to support flexibility in design and reusability. In the design, it is
recommended to avoid the definition of all the properties and logical components in a single monolithic JSON schema,
which prevents the ability to share and reuse individual properties or logical components defined as a group in a
schema.

http://patent-classification.uspto.gov/classifications/cpc
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-validation.html

CWS/7/5
MpunoxeHue, cTp. 6

Below is the schema that does not adhere to the modularity principle:

inventor_V1_0.json

{

"$id": "urn:us:gov:doc:uspto:patent",
"title": "inventor_Vi1i 0",
“"$schema': "http://json-schema.org/draft-07/schema#",
"type'': "object",
“"required": ["inventor™],
"properties': {
“inventor”: {
"description”™: "The individual or entity responsible for creating the
matter that protection is sought for.",
"properties': {
""personName': {
"properties': {
"prefixName': { "type": "string" },
“firstName™: { "type': "string" },
"middleName": { "type": "string" },
"lastName": { "type': "string" },
“"suffixName": { "type": "string" }

}

“required": ["firstName","middleName", " lastName"],

"additionalProperties': false
3.
"address': {
"properties': {
"physicalAddress": {
"properties': {
"addressLineText": { "type": "string" },
“cityName': { "type': "string" },
""geographicRegion™: { "type': "string" },
"postalCode™: { "type": "string" },
"countryCode™: { "type': "string" }
}.

“"required": ["addressLineText', "cityName",
""geographicRegion', "postalCode', "countryCode'],
"additionalProperties”: false
3.
""telecommunicationAddress™: {
"properties': {
"internationalDialingCode”: { "type'": "string" },
"areaCode': { "type'": "integer" },

"exchangeNumber': { "type': "integer" },
"extensionNumber': { "type": "integer" },
"telecommunicationServiceCategory': { "type': "string" }

}

"required”: ["internationalDialingCode",
"areaCode","exchangeNumber","extensionNumber","telecommunicationServiceCategory']

"additionalProperties”: false
}
3.
“required": ["physicalAddress", '"telecommunicationAddress"],

"additionalProperties': false

}
}

“"required": ["personName', "address"],
"additionalProperties': false

CWS/7/5
MpunoxeHue, cTp. 7

The preferred design approach is to split the data into a set of small components represented by schema modules,
which is shown in the new Inventor schema below. This JISON schema is built upon smaller JSON schema modules.

inventor_V2_0.json

{

"$id": "urn:us:gov:doc:uspto:patent”,

"$schema': "http://json-schema.org/draft-07/schema#",

“title”: "inventor_V2 0",

"description': '""Schema Name: Patent Application; Schema Published on: June 30,
2010; Version Number: 1.0; Description: Developed by: USPTO; Point of
Contact:",

"definitions": {
"inventor': {
"$id": “"#inventor™,
"description”: "The individual or entity responsible for creating the

matter that protection is sought for.",
"$ref': "#/definitions/inventorType"
}
"inventorType': {
"type'': "object",
"properties": {
"personName™: {"$ref":
""'urn:us:gov:doc:uspto:common#personName'},
“organizationName™: {"$ref": "urn:us:gov:doc:uspto:
common#organizationName™},
"designation": {"$ref':
"urn:us:gov:doc:uspto:patent#designation'},

“'stateDesignation™: {"$ref":
""'urn:us:gov:doc:uspto:patent#stateDesignation'},
“registrationNumber': {"$ref":

"'urn:us:gov:doc:uspto:patent#registrationNumber'},
"sequence': {"type": "string"}

"additionalProperties': false,
"required":
["personName™,""designation’,"stateDesignation", " registrationNumber","sequence’]

1.
"type': "object",
"minProperties': 1,
"additionalProperties': false,
"properties”: {
“inventor”: {"$ref": "#/definitions/inventor'}

}

CWS/7/5
MpunoxeHue, cTp. 8

personName_V1_0.json

{
"$id": "urn:us:gov:doc:uspto:common®,
“"$schema': "http://json-schema.org/draft-07/schema#",
"title": "personName_V1_0",
"description™: "_._..",
"definitions": {
""personName’: {
"$id”: "#personName',
"description™: "_...",
"$ref: "#/definitions/personNameType"
3.
"personNameType": {
""type'': "object",
“"properties': {
"prefixName™: { "$ref’:
"urn:us:gov:doc:uspto:common#prefixName™ },
"FirstName": { "$ref": "urn:us:gov:doc:uspto:common#firstName"
3.
"middleName™: { "$ref":

"urn:us:gov:doc:uspto:common#middleName" %},
“"lastName': { "$ref": "urn:us:gov:doc:uspto:common#lastName" },
"suffixName": { "$ref':
"urn:us:gov:doc:uspto:common#suffixName™ }
3
"additionalProperties': false,
"required": ["FfirstName","lastName']

}
T
"type'': "object",
"minProperties': 1,
"additionalProperties': false,
"properties”: {
"personName": {"$ref": "#/definitions/personName"}

}

JSON schemas should use the "definitions" keyword to create global definitions for properties and their contents that can
be reused, as shown in the above example. This is roughly equivalent to creating global element declarations and
named types in XML schema.

[JSD-04] JSON schemas SHOULD use the "definitions" keyword that includes a reusable definition for each
property and property type.

[JSD-05] Developers MUST use existing resources, wherever applicable, prior to creating new JSON schemas.
[JSD-06] Developers SHOULD create new data structures only after determining that no existing JSON schemas

adequately describe the given construct.

6.3 Documentation

JSON schema documents should be self-descriptive. Developers should aim to make JSON construct names
meaningful. In addition, the JSON schema should have documentation describing the schema and the JSON
constructs.

To promote reusability by keeping it general, the JSON schema will not provide documentation on system specific
implementation details.

[JSD-07] Documentation SHOULD NOT describe implementation details or other information not directly related to
the meaning of the construct.

A JSON schema header allows a schema developer to easily discern the purpose, use, and contents of a schema. This
information is very helpful when a schema developer needs to select a schema to be used as a template in the creation
of another schema.

CWS/7/5
MpunoxeHue, cTp. 9

[JSD-08] JSON schemas MUST include JSON schema header documentation using the "description" keyword.
Table 1 lists the items that should be included in the header section of all schemas.

Table 1. JSON schema header documentation items

Header item name Description Required/Optional

Schema Name The schema file Optional

Published on Publication date of schema Required

Version Number Major and Minor version number of | Required
the schema

Description Plain text description of the Required
information described by the
schema

Developed by Name of the organization or office Optional
that developed the schema

Point of Contact Name of Organization to contact Optional
with questions about the schema

The header items (schema name, published on, etc.) below should be separated by semicolons, with spaces allowed
after the semicolon, and make up the value associated with the "description" keyword. If a value is not available for the
header item then just the label should be included, as shown in the following example:

An example of header documentation

"description”™ : "Schema Name: Patent Application Schema; Published on: June 30,
2010; Version Number: 1 _1; Description: Patent Applications; Developed by: USPTO;
Point of Contact:"

6.4 File Name

File names must be compatible with multiple operating systems, applications and development platforms. Therefore
filenames must be restricted to ASCII characters most commonly used for filenames. Lower-case file names are
required to reduce complications across various file systems.

[JSD-09] The characters used in file names MUST be restricted to the following set: {a-z, A-Z, 0-9, underscores
() and period (.)}.

There are two allowed approaches for JSON schema definition. JSON schemas may contain the definition of properties
based on root property name (logical grouping name), for which the filename would be the name of the root property
name followed by “DataElements”, version number and schema extension e.g.
addressDataElements_V1_0.schema.json. The other scenario for schema would be the definition of a subschema. The
keyword associated with the subschema should be defined in the same schema file. The filename should reflect the
keyword, followed by version number and schema extension. e.g. trademarkApplication_V1_0.schema.json.

[JSD-10] The filename SHOULD be the combination of the root property name, version number and JSON
extension (e.g., patentApplication_V1_0.schema.json). Use of system and project names is prohibited,
because the system and project name may change over the life of the system.

6.5 JSON schema versioning

JSON schemas should reflect the ongoing changes to the business requirements. Versioning plays an important role in
accommodating the change and growth inherent in business requirements. Changes to the schema construct can be
better tracked by proper versioning of JSON schemas. JSON schema version should be denoted by both a major and a
minor version number in the format of ‘M_m’. ‘M’ represents the major version number of the schema in digits and starts
from 1, whereas ‘m’ represents the minor version number in digits and starts from 0. JSON schema version numbers
should be part of the file name.

CWS/7/5
MpunoxeHue, ctp. 10

[JSD-11] JSON schemas MUST include major and minor version numbers separated by ‘" in their file name. The
version number preceded by an underscore ‘_V<major version>_<minor version>’ is appended to the file
name, e.g. trademarkApplication_V1_0.json.

Version number is to be included in the header documentation of the schema.

[JSD-12] Version number included in the title schema header documentation MUST include major and minor
version numbers separated by ‘.

[JSD-13] The schema file name and header documentation MUST contain matching version information.

The original version of any schema should be denoted with a version number of <1_0>. Any subsequent change to the
schema should be represented by incrementing either the minor version number or the major version number depending
on the nature of the change.

[JSD-14] New minor versions of a schema MUST only add new optional properties to prior versions, or make some
cardinalities or value constraints less restrictive.

[JSD-15] New minor versions of schema MUST be able to validate instance documents created with preceding
minor versions of that schema with the same major version i.e. minor versions should be backwards
compatible with the previous major version. However, instance documents should not be expected to
validate against versions of a schema preceding the one they were created with.

When there is a major change in the schema, the major version number should be incremented while resetting the minor
version number to 0. For example, a schema may go through the following version changes: <1_0>; <1_1>; <1_2>;
<1 3><2 0>;<2_1>;<2 2>;<3_0>; <3_1> ... etc. where the version 2.0 and 3.0 are major versions.

[JSD-16] A major version of a schema MUST be incremented if new mandatory properties are added, any
properties are removed or cardinalities or value constraints are changed to be more restrictive.

[JSD-17] When creating a new schema, one SHOULD include the most recent versions of all the other referenced
schemas.

6.6 JSON Schema Document Properties Structuring

JSON schemas should have property "type" : "object" to ensure that JSON is used only for complex structures, not
individual values. Taken from personName_V1_0.json example above:

"type': "object",
"minProperties': 1,
"additionalProperties': false,

"properties': {
"personName": {"$ref": "#/definitions/personName"}
}
b3
[JSD-18] The outermost schema object must have a "type" keyword whose value is "object".

JSON schemas should have property "minProperties” : 1 to ensure that an empty value is not valid according to the
schema.

[JSD-19] The outermost schema object must have a "minProperties" keyword whose value is 1.

JSON schema extensions (customizations) should not be used. All keywords used must be defined by the JSON
schema specification.

[JSD-20] JSON schema extensions (customizations) MUST not be used.

CWS/7/5
MpunoxeHue, ctp. 11

7. JSON SCHEMA CONSTRUCTS DESIGN RULES
7.1 Overview

This section establishes the rules for JSON schema constructs. specifically arrays, objects and primitive values.
Standardization of names for schema constructs are critical to the development of a robust data architecture.

7.2 Properties
Properties, also known as members, are the basic building blocks of a JSON construct.

[JSC-01] JSON schemas SHOULD use existing properties and schemas to the maximum extent possible.
[JSC-02] Multiple properties that can be logically grouped together MAY be declared in a single schema file.

In some cases, where the object does not belong to a logical grouping and needs to be reused across the business, that
property can be declared in its own schema file.

[JSC-03] A property that does not fall into a logical group MAY be declared in its own schema file.

Each property should have a "global" definition that is defined within the "definitions" array. This will allow the property
name to be reused in many parents and have a consistent definition across all of them. Please see the "inventor"
property in the example below.

[JSC-04] Each property listed in a properties keyword SHOULD refer to a global definition that is defined within the
"definitions" keyword. That global definition SHOULD have the same name as the property.

An example of a property referring to a global definition

{
"$id": "urn:us:gov:doc:uspto:patent”,
"$schema': "http://json-schema.org/draft-07/schema#",
“title": "inventor_V1 0",
"description': "...",
“definitions™: {
“inventor”: {
"$id": "#inventor",
"description™: "...",
"$ref: "#/definitions/inventorType"

-

3.
"type'': "object",
"minProperties’: 1,
"additionalProperties': false,
"properties”: {
“inventor™: {"$ref': "#/definitions/inventor'}

}

>

The global definition of a property should consist of the id and description of the property.
[JSC-05] The global definition of a property SHOULD consist of the "id" and "description" of the property.

Properties must have types. They can either be defined directly within the definition of the property, or be handled
through a reference to a global property definition.

[JSC-06] A property MUST have a type that is specified using the "type" keyword, either as a direct property or
through a reference to a global definition.

7.3 Type Definitions

JSON schemas may define reusable type definitions that are referenced from global property definitions. These global
type definitions should consist of a "type" keyword, "properties” keyword (if type is "object") and any other value
constraints.

[JSC-07] A schema MAY define global type definitions in order to reuse content models across many properties.

CWS/7/5
MpunoxeHue, cTp. 12

A reusable type definition

“definitions"™: {
"inventorType": {
"type'': "object",
"properties': {
"personName™: {"$ref": "urn:us:gov:doc:uspto:common#personName"},
"organizationName'": {"$ref":
"urn:us:gov:doc:uspto:common#organizationName'},
"designation”: {"$ref": "urn:us:gov:doc:uspto:patent#designation'},
"stateDesignation”: {"$ref":
""urn:us:gov:doc:uspto:patent#stateDesignation"},
“registrationNumber*: {"$ref":
""'urn:us:gov:doc:uspto:patent#registrationNumber'},
"sequence': {"type': "string"}
3,
"additionalProperties': false,
“"required': ["personName',"designation', "stateDesignation",
"registrationNumber", "'sequence']
H
3,

[JSC-08] Definitions that represent types MUST have names that are in LCC convention + Suffix "Type".

7.4 JSON Primitive Type

[JSC-09] The most specific JSON primitive type that is relevant SHOULD be used for a property.

For example, if a property value will be an integer, the type "integer" should be used rather than the more generic
"number" or the more permissive "string".

7.5 Code Lists

In certain cases, it is advantageous to restrict a value to an enumerated list that are standard and acceptable for data
exchange purposes. Code lists are a means to create a controlled vocabulary of permitted values for a data element
(e.g., a standard code list for country codes, language codes, IP Office codes, etc.). Code lists which already exist in the
public domain and are maintained by relevant standards committee such as W3C or OASIS should be used.

[JSC-11] WIPO Standard ST.3 MUST be used for representing IPOs, states, other entities, organizations and for
priority and designated country/organization.

[JSC-12] ISO 3166-1-Alpha-2 Code Elements (2 letter country codes) MUST be used for the representation of the
names of countries for addressing and citizenship.

[JSC-13] ISO 639-1 (2-Letter Language Codes) MUST be used for Language Codes.

[JSC-14] ISO 4217-Alpha (3-Letter Currency Codes) MUST be used for Currency Codes.

[JSC-15] Documentation SHOULD NOT be substituted for code lists using enumeration.

Below is an example where the documentation is used instead of code lists, using enumeration for language options
which is NOT recommended.

Bad example: Code list is documented not defined

"description': "Possible values for language codes: en — English, es - Esperanto",

Enumeration used for a code list

"description': "ISO 639-1:2002 Part 1: Alpha-2 Language Codes",
“"enum”: ["en", "es"]

CWS/7/5
MpunoxeHue, cTp. 13

[JSC-16] The JSON enum keyword SHOULD be used for defining the code lists.

[JSC-17] The characters used in enumeration values MUST be restricted to the following set: {a-z, A-Z, 0-9,
period (.), comma (,), spaces, dash (-) and underscore ()}

7.6 Arrays

The term cardinality is defined as the number of items in an array. Cardinality is indicated in a schema using the
minltems and maxltems keywords. It is recommended that schema developers not specify default values for
occurrence indicators (i.e., "minltems": 0) because doing so can unnecessarily clutter a schema.

[JSC-18] JSON schemas SHOULD use minltems and max 1 tems keywords for arrays, except for the default
value of minltems (0).

The type of items in an array must be defined using the "items" keyword. For simplicity, all items in an array must have
the same type. If a sequence of objects of different types is desired, they should be defined as separate properties of an
object.

[JSC-19] For each object of type array, there MUST be an "items" keyword and its value MUST be a single
schema object and not an array. All items in an array MUST have the same type.

The "additionalltems" keyword must not be used for arrays, since it is not relevant when the value of "items" is a single
schema object.

[JSC-20] The "additionalltems" keyword SHOULD NOT be used when “items” is a single schema object.

7.7 Objects

7.7.1 Property "wildcards"
JSON schemas should not allow arbitrary properties to be part of the JSON instance and still be valid, which can corrupt
the integrity of the data exchange.

Use of the "additionalProperties" keyword is required and it must be set to "false". Otherwise, undefined properties will
be permitted in instances.

[JSC-21] A JSON schema SHOULD use "additionalProperties" and set its value to "false" for every object.

Using the "patternProperties" keyword is not allowed. This keyword allows mapping of regular expressions to schemas.

[JSC-22] A schema MUST NOT use the "patternProperties" keyword.

7.7.2 Order of Properties

JSON schema does not enforce a particular order on properties of an object. However, if a JSON schema has a
corresponding XML schema, it is recommended that the properties be listed in the same order as in the XML schema in
both the JSON schema and the instance.

[JSC-23] A schema SHOULD use the same order of properties as in the corresponding XML schema, if one exists.
8. JSON SCHEMA IDENTIFIERS

8.1 Overview

An ID in a JSON schema provides a URI that identifies a category of information based on the business domain (e.g.,
enterprise, patents, and trademarks). This draft standard has opted to use many-to-one relationships between the

handfuls of IDs and perhaps hundreds of JSON constructs. A group of related JSON constructs with unique names are
going to be associated with a particular ID. A uniform resource identifier (URI) should be used for identification.

[JID-01] IDs MUST be used in schemas using the "$id" keyword.

Once an ID is established and associated with JSON schemas, it must remain the same.
[JID-02] Published IDs MUST never be changed.

JSON constructs belonging to a specific schema ID should have unique names.

[JID-03] Within a schema, all names MUST be unique.

CWS/7/5
MpunoxeHue, cTp. 14

8.2 ID versioning

Many-to-one relationships exist between schemas and IDs. Distinct schemas may be associated with a single ID.
Within the ID, each schema may go through several major and minor version changes. It will be difficult to associate all
the version changes of the schemas to the versioning of the ID. There will never be two schemas with the same file
name and the same ID. Name conflicts should not be an issue across all the namespaces as each schema will clearly
be identified by its name along with the version number and its ID.

[JID-14] There SHOULD NOT be any versioning of the IDs.

9. INSTANCE DESIGN RULES

The JSON schema defines the structure and constraints for the JSON instance. To enhance and ensure sound (intra
and inter office) data exchange, JSON instances should be associated with the JSON schema to ensure validity and
conformance.

9.1 Order of Properties

JSON schema does not enforce a particular order on properties of an object. However, it is recommended that the
properties appear in the instance in the same order as in the JSON schema.

[JIN-01] A JSON instance document SHOULD use the same order of properties as in the corresponding JSON
schema, if one exists.

9.2 JSON instance validation

Successful validation of JSON instances ensures that its content satisfies all the requirements defined in the
corresponding schemas.

[JIN-02] JSON instance documents MAY be validated against a corresponding schema during processing.

[JIN-03] A run-time schema MAY be created to meet performance requirements of the application in the run-time
environment.

[JIN-04] All modifications, updates, revisions, and new releases MUST first be submitted to the XML4IP Task
Force for approval before the changes can be incorporated into the run-time schema.

It is desirable for a JSON instance to conform to a schema.

[JIN-05] A JSON instance SHOULD conform to a particular JSON schema that conforms to the rules described in
this document.

10. REFERENCES

— JSON Specification: http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
JSON schema Core, v.7 draft: http://json-schema.org/latest/json-schema-core.html

JSON schema Validation, v.7 draft: http://json-schema.org/latest/json-schema-validation.html

— WIPO ST.96: http://www.wipo.int/standards/en/st96

11. APPENDICES

11.1 Appendix A — Mapping XML schema to JSON schema

This section describes the mapping between XML schemas and JSON schemas and explains how to convert from one
to the other.

Table 2. Mapping of XML and JSON schema Concepts

XML Schema JSON Schema

Schema Schema

Namespace 1D

Element Property

Attribute Property

Global Element Declaration Definition of the property under the "definitions" keyword.
Global/Named Type Definition Definition of the type under the "definitions" keyword.
Repeating Element Property of type "array"

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-validation.html
http://www.wipo.int/standards/en/st96

CWS/7/5

MpunoxeHue, cTp. 15

XML Schema

JSON Schema

Complex Content Element

Property of type "object" (or array of objects)

Simple Content Element

Property of type "string", "number", "integer" or "boolean"

Table 3. Mapping of XML and JSON schema Keywords

xs:sequence or xs:all

XML Schema JSON Schema
Xs:annotation description

@id id
xs:complexType / properties

xs:complexType /
xs:choice

Properties/oneOf or anyOf

@minOccurs (> 0), @use

required

@minOccurs, @maxOccurs

minltems, maxltems

@ref $ref

@type type

xs:minLength minLength
xs:maxLength maxLength

xs:length minLength + maxLength
Xs:pattern pattern

XS:enumeration enum

xs:minExclusive

minimum, exclusiveMinimum="true"

xs:maxExclusive

maximum, exclusiveMaximum="true"

xs:mininclusive

minimum

xs:maxinclusive

maximum

Table 4. Mapping of XML and JSON schema Simple Types

XML Schema JSON Schema
xs:integer integer
xs:decimal, xs:float, xs:double number
xs:boolean boolean

xs:date, xs:dateTime, xs:time

string, with format "date-time"

xs:anyURI

string, with format "uri"

all others

string

11.2 Appendix B — Representation Terms

CWS/7/5
MpunoxeHue, cTp. 16

Term

Definition

Data Type

Amount

A monetary value.

Number

Category

A specifically defined division or subset in a system of classification in
which all items share the same concept of taxonomy.

String

Code

A combination of one or more numbers, letters, or special characters,
which is substituted for a specific meaning. Represents finite,
predetermined values or free format.

String

Date

The notion of a specific point in time, expressed by year, month, and day.

String

Directory

Always preceded by PATH

String

Document

A CLOB stands for "character large object," which is a specific data type
for almost all databases. Quite simply, a CLOB is a pointer to text stored
outside of the table in a dedicated block. Used for XML documents.
Comprised of textual information of International Trademark Registration
being exchanged. XML tags identify the data items concerned with such
information. TIS - Madrid development team may define the attribute
XML_DOC as CLOB, pointer to Tagged Data stored outside of the table
in a dedicated block.

String

Identifier

A combination of one or more integers, letters, special characters which
uniquely identifies a specific instance of a business object, but which
may not have a readily definable meaning.

String

Indicator

A signal of the presence, absence, or requirement of something.
Recommended values are Y, N, and, “?” if needed.

boolean

Measure

A measure is a numeric value determined by measuring an object along
with the specified unit of measure. MeasureType is used to represent a
kind of physical dimension such as temperature, length, speed, width,
weight, volume, latitude of an object. More precisely, MeasureType
should be used to measure intrinsic or physical properties of an object
seen as a whole.

Number

Name

The designation of an object expressed in a word or phrase.

String

Number

A string of numeral or alphanumeric characters expressing label, value,
guantity or identification.

Number, String

Percent

A number which represents a part of a whole, which will be divided
by 100.

Number

CWS/7/5

MpunoxeHue, ctp. 17

Term

Definition

Data Type

Quantity

A quantity is a counted number of non-monetary units, possibly including
fractions. Quantity is used to represent a counted number of things.
Quantity should be used for simple properties of an object seen as a
composite or collection or container to quantify or count its components.
Quantity should always express a counted number of things, and the
property will be such as total, shipped, loaded, stored. QuantityType
should be used for components that require unit information; and
xsd:nonNegativelnteger should be used for countable components
which do not need unit information.

Number

Rate

A quantity or amount measured in relation to another quantity or amount.

Number

Text

An unformatted character string, generally in the form of words.
(includes: Abbreviation, Comments.)

String

Time

A designation of a specified chronological point within a period.

Date

DateTime

The captured date and time of an event when it occurs.

Date

URI

The Uniform Resource Identifier that identifies where the file is located.

String

11.3 Appendix C — List of Acronyms and Abbreviations

Short Form Long Form

Alt Alternate Text for image

B Bold

BioDeposit Biological Deposit

Br Break

CDX CambridgeSoft proprietary ChemDraw file format

CPC Cooperative Patent Classification

DD Definition Description

Del Deleted text

DL Definition List

DOl Digital Object Identifier

DT Definition Term

DTD Document Type Definition

DWF Design Web Format

DWG Drawing

ECLA European Classification

ExtRef References that are external to the current document

H<n> The “n” indicates the level of Heading with a specific value
from 1 to 15 digit number. It means, in the enumeration
value, this abbreviation represents one of H1 to H15. For
example “H1” means “Heading 1”.

| Italic

ID Identifier for system identification

IDREF Identifier Reference

CWS/7/5

MpunoxeHue, cTp. 18

Short Form Long Form

IDREFS Identifier References

IGES Initial Graphic Exchange Specification

Ins Inserted text

P Industrial Property

IPC International Patent Classification

IPCR International Patent Classification Reform

IPO Industrial Property Office

IPR Industrial Property Right

I1ISO International Organization for Standardization

JSON JavaScript Object Notation

LCC Lower Camel Case

LI List Item

LOR License Of Right

MPEG Moving Picture Experts Group

MOL File format for holding information about the atoms, bonds,
connectivity and coordinates of a molecule

NB File format for Mathematica notebooks

NPL Non Patent Literature

(6] Over score

OASIS Organization for the Advancement of Structured
Information Standards

OCR Optical character recognition

oL Ordered List

P Paragraph

PAN Primary Account Number

PCT Patent Cooperation Treaty

PKCS7 In cryptography, PKCS is a group of public-key
cryptography standards and PKCS #7 (PKCS7) is for the
Cryptographic Message Syntax Standard which describes
general syntax for data that may have cryptography applied
to it, such as digital signatures and digital envelopes.

Pre Preformatted text

S Strike through text

SEQL Sequence listing

SPC Supplementary Protection Certificate

ST3 WIPO Standard ST.3

ST13 WIPO Standard ST.13

Sub Subscript

Sup Superscript

SVG Scalable Vector Graphics image

SWF Small Web Format

SWIFT Society for Worldwide Interbank Financial
Telecommunication

ThreeDM Dimensional Modeling

ThreeDS 3D Studio

U Underlined

ucc Upper Camel Case

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Cryptographic_Message_Syntax

CWS/7/5

MpunoxeHue, cTp. 19

Short Form Long Form
UL Unordered List
UPOV The International Union for the Protection of New Varieties
of Plants
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
w3cC World Wide Web Consortium
WIPO World Intellectual Property Organization
WMV Windows Media Video
XML eXtensible Markup Language

[KoHeu MpunoxeHnsa n gokymeHTa]

	ВВЕДЕНИЕ
	РАБОЧИЙ ПРОЕКТ НОВОГО СТАНДАРТА JSON
	Область действия стандарта
	Цель стандарта
	Структура стандарта

	ПОСЛЕДУЮЩЕЕ ОБСУЖДЕНИЕ И РАБОТА
	cws_7_5_annex_ru.pdf
	WIPO STANDARD ST.XX
	INTRODUCTION
	DEFINITIONS AND TERMINOLOGY
	GENERAL NOTATIONS
	3.1 Rule Identifiers
	3.2 Sample JSON Data Structure

	SCOPE
	JSON GENERAL DESIGN RULES
	5.1 Overview
	5.2 JSON Naming Conventions

	JSON Schema Design Rules
	6.1 Overview
	6.2 Modularity
	6.3 Documentation
	6.4 File Name
	6.5 JSON schema versioning
	6.6 JSON Schema Document Properties Structuring

	JSON SCHEMA CONSTRUCTS DESIGN RULES
	7.1 Overview
	7.2 Properties
	7.3 Type Definitions
	7.4 JSON Primitive Type
	7.5 Code Lists
	7.6 Arrays
	7.7 Objects
	7.7.1 Property "wildcards"
	7.7.2 Order of Properties

	JSON SCHEMA IDENTIFIERS
	8.1 Overview
	8.2 ID versioning

	INSTANCE DESIGN RULES
	9.1 Order of Properties
	9.2 JSON instance validation

	REFERENCES
	APPENDICES
	11.1 Appendix A – Mapping XML schema to JSON schema
	11.2 Appendix B – Representation Terms
	11.3 Appendix C – List of Acronyms and Abbreviations

