=

WIPO

BCEMWPHARA OPTAHMIALIMA
MHTENNEKTYANBHOW
COBCTBEHHOCTW

cws/7/4
OPUIMHAJ: AHFTIUACKUI
OATA: 13 MIOHSA 2019 T.

KomuteT no cranpgaptam BOUC (KCB)

CeabMan ceccus
KeHeBa, 1-5 nrona 2019 .

MPEONOXEHWE O PABPABOTKE CTAHOAPTA BOVC HA MHTEP®ENC
NMPOrPAMMMNPOBAHNA NMPUNOXEHWUW (API1) AN1A BEB-CEPBNCOB

LokymeHm nodzomoeneH MexxdyHapoOHbiM 6t0po

BBEAEHNE

1.  YuutbiBag, 4TO BCe BonbLuee YNCNO BEAOMCTBO MHTENNEKTYanbHON COBCTBEHHOCTH
(BAC) ncnonbaytoT Beb-cepBUChI AN NOSAEPXKKM CBOMX KITMEHTOB, Ha NsaTon ceccun KomuteTa
no crangaptam BOUC (KCB), coctosBluencs B 2017 r. MexxayHapogHoe 6opo npeanoxuno
cchopMynunpoBaTb HOBYIO 3agadvy, CBA3aHHYo ¢ nogaepxkon BUC B paspaboTke Takunx Beb-
cepBucos (cMm. okymeHT CWS/5/15). KCB cdpopmynuposan 3agady Ne 56, BbINONIHEHME KOTOPOM
Ob1no nopyyeHo Leneson rpynne no XML ana AC (UIN no XML gna UNC). OnncaHune 3agaydn

Ne 56 BOCNpON3BOANTCS HUXKE:

«MoaroToBUTL pekomMeHaaLMn No 06MeHy AaHHbIMK, obecneynBaloLLe MeXMaLLNHHYO
nepegavy AaHHbIX, YAen1B OCHOBHOE BHUMaHMUE:

i. dopmaTty coobLueHuI, CTPYKType AaHHbIX U croBapto AaHHbIX B JSON n/unu XML;
i. cornalleHusmM o NPUCBOEHUUN UMEH ANst YHUPULMPOBAHHOIO MAeHTUdMUKaTopa
pecypcos (URI)»

2. MNpw BbinonHeHun 3agaym Ne 56 1 paspaboTke npoekta ctaHaapTa Llenesas rpynna
paccunTbIBaeT, 4To BegoMcTBamu VIC GyayT nonyyeHsl cregyowmne pesynbraThbl:

— pekomeHZauuun nNo nepeaoBoKr OTPACcNeBOW NPaKTUKe, He 3aBucawme ot obbema
onepauui Be4OMCTBa;

— peKkoMeHOauns B OTHOLUEHUN Haanexallen CTPYKTYpbl AaHHbIX U TUNOBOIMO CrioBaps
onepauumn, 4To ynpoCcTUT MEXMaLLUMHHOE B3anmoaencTene mexay BUC nnu
B3aMMOAENCTBUE Mexay paspabaTbiBaeMbiMy UMY MPOrPAMMHbBIMWN NPUNOXKEHUAMU;



CWS/7/2
cTp. 2

— pekoMeHJauusi B OTHOLWEHUN nporpaMmm ansi obecneveHns 6esonacHocTu
n ayTeHTUduKaumm, kotopas nomoxet BUC B BbIGope nporpamMmm v NpuMHUUNOB
ayTeHTUmKaumm B cUTyaLmsax, Koraa CyLwecTBYOT pasnuyHble XenaTernbHble YPOBHM
©e3onacHoOCTU; U

— npaBuna MMeHoBaHusi, NO3BONSIOLME BbipaboTaTb CTaHAAPTHBIN NOAX0 K BbISIBIEHUIO
pecypcoB AaHHbIX, MOCKONbKY pa3paboTka pasnuyHbIX BEPCU Taknx pecypcos byaeT
cnocobcTBOBaTh MEXAyHapoAHOMY O6MeHy AaHHbIMU B 06MacTu MHTENNEeKTyansHon
cobcTtBeHHocTH (UC).

3. Ha cBoen wectom ceccumn B 2018 r. KCB npuHAn kK cBegeHuio pabounin NpoekT ctaHgapTa
Ha API gnsa Be6-npunoxeHun, noarotosneHHbln Lieneson rpynnon no XML ans NC

(cm. gokymeHT CWS/6/6 CORR.). Kpome Toro, KCB yTBepaun AByx noTeHumnanbHbIX
«KkaHgmaaToB» Ha ponb TunosbiX APl ans Be6-npunoxeHuin: Beb-cepsuc, peann3oBaHHbI Ha
obwmx npuHunnax OPD (EanHoro nopTtana gocTyna Kk 4ocbe) u Beb-cepBuchl st oOMeHa
AaHHbIMU O OPUAONYECKOM CTaTyce NaTeHTOB (CM. MyHKTLI 44 - 46 aokymeHTa CWS/6/34).

KCB npwusHan HeobxoaumMbiMy JanbHenWwmne nsmeHeHnsa NpoekTa craHgapTa Anst NoAroTOBKK
MTOrOBOro AOKYMEHTAa M ero pacCcMOTpeHMs Ha ceabMom ceccumn KCB (cm. nyHKT 48

aokymeHta CWS/6/34).

4, Mocne wecton ceccun Llenesas rpynna no XML ans VIC opraHmsoBana B pamkax
BbINONHEHMS 3agayvm Ne 56 Heckonbko payHOo0B 006CYyXaeHUn B (hOpMe OHMAMHOBbLIX
coBeLllaHn n obcyxaeHun B Buku-goopyme Lieneson rpynnbl Ang AopaboTkm npoekTa
aokymeHTa. ObcyxaeHme obbema 3agay u cogep)kaHmsa ctaHgapTa Obifo NpoAoSHKEHO Ha
coselwaHum Leneson rpynnel no XML ana AC B Ceyne B mapTte 2019.

5. Tlocne wecton ceccun KCB MexayHapoaHoe 6iopo Takke NpoBoaUIio BHYTPEHHUE
obcyxaeHusa NpoekTa ctaHgapTa U nnaHoB ero peanusauun B Bed-cepsmcax BOUC no mepe
HeobXxoaMMOCTW.

NEPECMOTP PABOYEIO MNMPOEKTA CTAHOAPTA

6.  YuuTbiBas pesynbTaTtbl 0O6CYy)KAEeHMS, COCTOSABLUErocsi Ha coselaHum Lleneson rpynnbl no
XML gns UC B Ceyne, u ganbHenwmne KOMMEHTapumn, nocTynueLune B BUKK-cpopyme Lleneson
rpynnbl no XML ans NC, B npoekT ctaHgapTta API ons Be6-npunoxeHun 6bin BHECEH psag,
n3meHeHun. NepecmMoTpeHHbIV AOKYMEHT nNpeanaraeTcs Ha paccMoTpeHne uneHos Komuteta
B BUAE NPUNOXEHNS | K HACTOALLEMY AOKYMEHTY.

7. Hwxe npmnBoauUTCA pes3trome N3MEHEHWI, BHECEHHbLIX B CTaHaapT nocrne Toro, Kak ero
nocnegHAA Bepcud Obina npeacrtaBrieHa Ha wecTon ceccumn KCB:

— TeKCT cTaHgapTa 6bin nepenvcaH ans yny4yeHus Ucnonb3yemblix B Hem (hopMyNMpOBOK
N rpaMmaTnYecKnx KOHCTPYKLUUNA;

— npasBuna paspaboTku Bbinun knaccuuunpoBaHbl B COOTBETCTBUN C TEM, OTHOCATCS N
OHM K chopmMaTtam BbiBoga AaHHbiXx JSON, XML nnu npumeHMmMbl kK 06omm chopmaTam.
Hanpumep, [RSG-01] — ato npasuno, npumeHmmoe Kk API RESTful ¢ coopmaTtamm
BbIBOAA AaHHbIX XML nnun JSON;

— npasBuna paspaboTku BbINn nepenucaHbl Taknm obpasom, 4Tobbl B HUX NCNONb30Banunch
TepMuHbl NM6o « SHOULD», nnbo «MUST», HO He o6a 3Tn TEpMUHA BMECTE;

— [MpunoxeHue | npegcTtaBneHo B npeaBapuTeNbHOM BUAe C OTAENbHbIMY Tabnvuamm
ONS Pa3nnYHbIX YPOBHEN COOTBETCTBMUSA («AA», «A») ANs pasnnyHbiXx GopMaToB
BbIBOAA AaHHbIX (XML n JSON);

— [Mpunoxenwue Il npegctaBneHo B NnpeaBapuTENbLHOM BUAE M B HAacTosLLee BpeMs
BKITHOHMAET Kak onepaumoHHbIN crnoBapb (NPOMbILLIEHHas COBCTBEHHOCTb), TaK U
TEXHNYECKMI crioBapb ans Beb-cepencos RESTful n SOAP;



CWS/7/2
cTp. 3

— NpYMepbl TUMOBbLIX AOFOBOPOB, O KOTOPbIX MAET peyb B NYHKTE 9 HUXe, Takke bbinm
BKINIOYEHbI B Ka4eCcTBe A0MNOSTHEHNA K NpuIioXkeHuto |V gna noMoLum nosib3oBaTenam
B pa3paboTke nx cobCTBEHHbIX cneundukaumi API, 3aMeHsAoLWmMX nepBoHayanbHO
cogepxaswmneca B Hem cneumdpumkaunm RAML; n

— pobaeneHo npunoxexue VIll: nepeyeHb TEPMUHOB BOCNPOU3BEOEHNS, PEKOMEHAYEMbIX
K MCMONb30BaHMIO.

Cnegyet oTMeTUTb, 4YTO Npumep Tunosoro API ansa Be6-npunoxeHnin SOAP, KOTOPbIN SOMKEH
cratb [NpunoxeHnem V K NpoekTy cTaHgapTa, noka He nogrotosneH. LM no XML gna NC
obcyauT Bonpoc o uenecoobpasHocTy pa3paboTkn Takoro npuMmepa nocrie cefjbMon ceccum
KCB.

8. Mo cornacoBaHwuto ¢ rpynnon natu Begomcts MIC (rpynnoit IP5)!, koTopoii npuHaanexat
Beb-cepBucbl OPD, cepsuc DoclList 6bin BeiOpaH kak Hanbonee nogxogsawmin KaHangaT Ha
ponb o6pasua A4na NOAroTOBKM NEPBOro TUMOBOro Npumepa cneundukaumm. Tekywmmn cepsmuc
DoclList no3sonseT nonb3oBaTeNAM Nofy4aTb akTyarnbHbIA NepeYyeHb 4OKYMEHTOB,
OTHOCSILLMXCA K 3asBKe C KOHKPETHbIM HOMEPOM. HOBbLIN TUNOBOW Npumep ByAeT «KonMpoBaTb»
3Ty npoueaypy, Ho 6yaeTt peanv3oBaH C ypOBHEM COOTBETCTBUSA TEKyLLeMy NPOEKTy cTaHAapTa
«AA» n obecneumBaTtb BbIBOA AaHHbIX, COOTBETCTBYOWMIN TpeboBaHnam ctaHgapta BONC
ST.96. lMNMogpobHee o TpebyeMbIX YPOBHAX COOTBETCTBUS CM. NpUNoxeHue | K HacTosiwemMy
AOKYMEHTY.

9. Cneuvndukaums gorosopa Ha obCcnyxmBaHne, COCTaBnstoLLas AONOSTHEHNE K
MpunoxeHuto IV K NpoekTy ctaHaapTa, paspaboTtaHHoro ans API nepeyHs aokymeHtos WIPO-
Case, npMBOANTCA B CrpaBOYHbIX Liensx B kKadyecTse npunoxeHus Il (B Buge ZIP-anna). 3ta
cneungukaunsa coctouT U3 AByx dannos: cneumdukaumm API, HanucaHHon B YAML,

1 cneuundmkaumm gorosopa Ha obecnyxuBaHue, oTpaxatoLlen onepaumnoHHble 3agayn. 3T1o
npumep nogxoda, OCHOBAHHOMO Ha NPUHLKUMNE «CHavana goroBop» (CM. MYHKT 12 Huxe).

10. Kpowme Toro, MexxgyHapogHoe 610po nnaHMpyeT peannsoBaTb NepBble TUNoBble 06pasubl
B Buge API, goctynHoro ans nonb3oatenen WIPO-CASE (cucTeMbl LeHTpanM3oBaHHOMO
AOCTyNa K pesyrnbTatamMm noucka u akeneptusbl). AToT API nnaHnpyeTcs He Kak 3ameHa
Tekywiero Beb-cepsuca OPD, a kak npumep Beb-cepBuMca «MNOMHOMo Luknay, Kotopbli dyaet
pa3paboTaH B COOTBETCTBMU C peKOMEHAALUNSMU, COAEPXKALMMMNCS B NPOEKTe cTaHaapTa.
Tekywlaa gopoxHas kapTa paspaboTkm bygeTt npegycMmatpmBath peanuaawmio 3Toro Beb-
cepsuca o koHua 2019 r. Hapsgy ¢ HOBbIM BED-CEPBMCOM, KOTOPbIN TakKe NO3BOSNUT
3anpawumeartb 1 nony4vartb coaep)KaHue 3TUX JOKYMEHTOB.

HanpaeneHus pa3paboTku

11. Ha pganHom atane LUIM no XML ana UC npocut cumTtaTh AaHHbIA cTaHAapT paboymm
MPOEKTOM, MOCKOSIbKY OH BCE elle HYXJaeTCs B COBEPLUEHCTBOBaAHUN N pa3BUTUM B psiae
acnektoB. B cBA3n ¢ 3TUM gaHHbIM paboumnn NpoekT GyaeT noka npeactaBrieH TONbKO

Ha aHrnMnckom A3bike. B nyHKTax, cneaylowmx HKe, 4aeTca KpaTkoe OnucaHne npeanoxeHus
B OTHOLLEeHUN Byayuimx 4opaboTok NpoekTa cTaHgapTa.

12. B cBsA3n c HegocTaTovHOM NpopaboTaHHOCTLIO cneundmkaumm oTkpbiToro APl (OAS)

B YacTu noaaepxku onpeagenexHnn XML-cxem (XSD), MNMpunoxenune IV Ha gaHHom atane 6yget
coagepxatb Habop MeToau4eckmx pekomeHaauun no paspabotke APl ansa Beb-npunoxeHun,
yCTaHaBNUBAOLLMX KPUTEPUMN PELLIEHUS BONPOCA O TOM, C Yero HeOBX0ANMO HaunHaTL Npu
pa3paboTKe: ¢ NoAroTOBKM AoroBopa (crneundukaumm) unm ¢ Hanucanus koga. B uenom
peKOMeHAYeTCS CneayroLnii NOAXOA:

1 B cocTaB rpynnbl IP5 BxogsaT HaumoHanbHoe ynpaeneHne HTennekTyansHoi cobecTeeHHocTn Kntas, EBponeiickoe
naTteHTHoe BeoMcTBO, Kopelickoe BeOMCTBO MHTENNEKTYaNnbHON COGCTBEHHOCTH, ANOHCKOE NaTEHTHOE BE4OMCTBO
n BegomcTtBo No nateHTam 1 ToBapHbIM 3Hakam CLLUA.



CWS/7/2
cTp. 4

— ecnu umeroTca yxe rotosble XSD-dannel, HanpumMep, B cnyyae ctaHgapta ST.96,
OYeHb CIOXHO paspaboTtaTth cneumdmrKkaLmio 40 HanMcaHusa Koda, U Mo3TOMY Takow
noaxon He pekoMeHayeTcs; U

— ecnu rotoBbix XSD-hannos HET U OHW AOMKHbI pa3pabaTbiBaTbCa C HyNs,
npegnoyvtTuTenbHee HaunHaTb C oroeopa (cneuundukaumn).

B cBsA3M € 3T1M BCe npasuna, B KOTOPbIX COAEPXMTCA KOHKPETHOE yKa3aHue dopmara 3anpoca
1 oTBeTa BbINn N3bATLI U3 NPOeKTa cTaHAapTa unu 6biny NepeBefeHbl C TOYKU 3peHUs
obecneyvyeHnsa cooTBeTCTBUA U3 KaTeropun « MUST» B kateroputo «SHOULD». 310 caenaHo
AN Toro, YTobbl NPOEKT CTaHA4apTa NoAAepXunBan onMcaHHbIN Noaxosa,.

13. [o okoH4aTenbHou nogrotoBku Npunoxenuns | n MNMpunoxenuns Il Heobxoomma
pononHuTensHas nHpopmauma ot KCB. B yacTHocTh, uneHam KomuTteTa pekomeHgyeTcs
npeacTaBuUTb CBOM OT3bIBbl B OTHOLLEHWW NEepeCcMOTPEHHOIo Noaxoaa, onMcaHHoro

B NPUMNOXEHWUU | K HacTosLeMy JOKYMEHTY AN OLEeHKN YPOBHEW ero COOTBETCTBUS NMPOEKTY
cTaHgapTa v ero npUMeHUMOCTMW.

14. T[pwumepsbl B opmate XML n JSON 6yay paspaboTaHbl Ha ocHoBe cTaHgapTa BOUC
ST.96 onsa obecneyveHnst ICNONb30BaHUA 3TOro ctaHgapTa ans oteetoB APl Be6-cepBrcoB.

HepellueHHble Bonpochl

15. [Momwumo obnacTei pa3paboTku CyLLECTBYHOLLMX ANIEMEHTOB NPOEKTa cTaHaapTa, Ha
coBellaHun Llenesow rpynnel B Ceyne 6binn BbiSIBNEHbI CeaytoLme BONpochl, KOTOpbIe Noka
OCTaloTCs HEPELUEHHBIMMU:

— CnepyeT nu coxpaHnTb B cOCTaBe cTaHgapTa rnasy o SOAP?

— B kakon cTeneHu Ham crnegyeTt coBeToBaTbCs C paspaboTymkamum, NpmBrekaeMbiMn
rocygapcrteamu-ynieHamu n/unu MexgyHapoaHeiMm 610po?

— Ecnu BUC HanpaBnsieT gaHHble 0 NpaBOBOM CTaTyce NaTeHTa Ang UCcnonb3oBaHus
NHTepencom nporpamMmmmpoBaHmns npunoxeHun (API), 4OMmMKHbI M AaHHbIE
npenocTaBnsTbCA B HECTPYKTYPUPOBAHHOM BUAE WU B CBA3W C KOHKPETHBLIM MPaBoM
NC, n c kakon NepMoanNYHOCTLIO cneayeT OOHOBNATL TakMe AaHHbIe?

— Heobxognmbl N MeTogMYECKNE PEKOMEHOALMM MO CO3AAHUI0 «NECOYHULbI» OIS
aKcnepumMeHTanbHon paboThbl pa3paboTyMKOB; Kak bygeT obecnevmBaTbCs
©e3onacHocTb API?

— He cnuwkom nu ecTko 3afaHa B cTaHgapTe obnactb NpuMeHeHns Moaenen
©es3onacHocTn?

— 3auHTepecoBaHbl i BUC B pa3spaboTtke apyrux API, COOTBETCTBYOLMX TpeboBaHMAM
cTtaHgapTa, no obpasuy OPD?

NPEONOXEHWE OB MSMEHEHWN ONMUCAHNA 3AOAYN Ne 56

16. B HacTosilee Bpems 3a BbinonHeHne 3agaym Ne 56 oteevaet LI MO XML OJ1A UC,
ofHako aTa Llenesas rpynna npeanaraeT co3faTb ANS BbINOMHEHUS 3TOW 3a4a4n HOBYHO
uenesyto rpynny, nockonbky B LIIN MO XML ONA NC BxogaT cneumanncTbl MO KOHKPETHON
onepaumoHHon obnacTu, 3Hakomble ¢ opmaTom XML, HO He Bceraa 3HakoMble C BOMpOCcamm
paspaboTkn API (cM. nyHKT 33 gokymeHTa CWS/7/3.)



CWS/7/2
CcTp. 5

17. Wcxogs vs npegnonoxeHust o Tom, yto KCB yTBepaAuT co3gaHme Takon HOBOW LierieBon
rpynnel, MexxgyHapogHoe 6topo npeanaraeT pacCMOTPeTb creaylowme ONONHUTENbHbIE
NYHKTbI:

(a) nameHeHne onvcaHus 3agaqn Ne 56, KoTopoe npeanaraeTcs B crieaytoLen peaakLum:

«[NogroToBuTb pekomeHgaumm no obmeHy gaHHbIMK, obecnednBatoLmne
MeXMaLUMHHYIO nepefavy AaHHbIX, YAenus oCHOBHOE BHUMaHueE: (i) obneryeHuto
pa3paboTkn Beb-cepBucoB, paboTtatowmx ¢ pecypcammu UC; (ii) nogrotoBke croBaps
onepauui n COOTBETCTBYIOLMX CTPYKTYP AaHHbIX; U (iii) cornaweHnsam

O NPUCBOEHUN UMEH AN YHUprUMpoBaHHOro naeHtudukartopa pecypcos (URI)»; n

(b) cospaHue oHnanHoBoro hopyma anga obecneyeHms Gonee LWMPOKOro B3aMMOAENCTBIUSA
MeXay HOBOW LieneBon rpynnomn n paspaboTynkamum, KOTopble CO34al0T B HacTosLee
BpeMmSs, U, BO3MOXHO, ByayT cosgasaTth B Oyaywem APl gns paboTel ¢ pecypcamu,
OTHOCALLMMUCA K cdhepe UHTENNEKTyanbHOM COBCTBEHHOCTM.

18. KCB npeanaraertcs:

(@) nApuHAMb K ceedeHUr
codepxaHue Hacmosiue2o O0KyMeHma u
€20 npusoxeHud;

(b) paccmompems npedrnoxeHue
0 co3daHuu Hoeol uesnesol epyrrikbl,
yriomuHaemou 8 riyHkme 16 sbiwe, u
MPUHAMb coomeemcmeyrouwee peweHue;

(¢)  usyyumsb npednoxeHusi 06
usMeHeHuu onucaHusi 3adadqu Ne 56 u
co3daHuu oHnalHoeoz2o hopyma, 0 Yem
udem peyb 8 nyHkme 17 abiwe;

(d) pekomeHdosamb sedomcmeam
NC yyacmeosamb 8 mecmupogaHuu
Hosbix API 819 WIPO CASE nocrie ux
8HeOpPEeHUSI, Kak 3mo npedyCcMompeHo
nyHkmowm 10;

(e) npocumb eedomcmea VIC
Haripassisimb 0m3bi8bl 8 OMHOWeHUU
CKOPPEKMUPOBAHHbIX UIU HO8bIX
npunoxeHud K npoekmy cmaHdapma, Kak
amo npedycmompeHo nyHkmamu 7, 12 u
13, sksrovasi gonpocki obrnacmu ux
rnpUMeHeHus;

(h  nmpocumb MexdyHapodHoe 6topo
pacrnpocmpaHume YUPKYSpHOe nucbMO
¢ npednoxeHuem eedomcmeam VC
Ha3Ha4yumb 3Kcriepmos o paspabomke
API dns eeb-npunoxeHut 0n1g y4acmusi
8 pabome Hogol yenesoul epyrinbl, ecriu
peweHue o ee cozdaHuu bydem rnpuHamMo;
u



CWS/7/2
CcTp. 6

(9) nApocume HO8YIO Ueriesyro
epynmny npedcmasume OKOHYamesibHoe
rnpedrnoxeHue 8 OMHOWEHUU HO8020
cmaHdapma.

[MpunoxeHue cnegyeT]



CWS/7/3
NPUNOXXEHUE |

WIPO STANDARD ST.XX
RECOMMENDATIONS FOR WEB API ON INTELLECTUAL PROPERTY DATA
Working Draft - version 0.9.0
Editorial Note prepared by the International Bureau
This Working Draft is prepared by the XML4IP Task Force and shared for information at the seventh session of the CWS,

only in English. This Draft will be further updated in due course and the final draft will be submitted for consideration by the
CWS at its eighth session.

TABLE OF CONTENTS

1 INTRODUGTION ...ttt ettt ettt ekt k e bt e b e oa e ea bt oo bt e ehe e e bt o bt e e et e e ea bt e eh bt e ebe e et e et e e et e anbeeennean 3
2 DEFINITIONS AND TERMINOLOGY ...uutiiiuiiiiiiiiiiiiiiiiiiii s a e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaans 3
3 [\ [o] 7= 11 o] o P PO T PP TP P PP PU PP PPPPPPPPPRON 4
T B 1= o 1= | g To =T OO TP P PPPPPPPPPUOPPRIN 4
3.2, RUIE IHENTITIEIS ...ttt e bt e e a et e e ettt e e ea b e e e e ea b e e e e et e b e e et b e e e e bneeesatneeeees 4
4 SO O P ..ttt 4
5. WEB API DESIGN PRINCIPLES ...ttt ettt h ettt he e bt e bt e et e e st e nane s 5
6. RESTRUL WEB AP ..o e e e e e e e e e e e e oo oo e oo oo e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaaeaaaaaaaaaaaaaans 7
6.1, URI COMPONENLS ...t a e e e e e e e e o e e o oo e e e e e e e e e e e e e e e e e e oo e e e e e e e e e e e e e e e e e e e e e e aaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 7
B.2.  STALUS COUES .....eeiiiiiiie ettt ettt ettt ettt et et e e e et oo h b et e e e ab et e e e e bt e e e ek et e e sk b et e e e ab et e e aa b bt e e et n e e e aer e e e e e 8
6.3, RESOUICE MOUEL.......eeeiieieie ettt ettt oottt ookttt e oo a bt e e e aabb e e e o a kbt e e e kbt e e ok be e e e ambe e e e anbbeaeanbneaesanbeaeann 8
6.4. SupPOrting MUILIPIE FOIMALS ......eiiiii i e e e s e e e e e s st e e e e e e s s b e e eeaeeeeannseeeeeeas 10
B.5. HTTP MEENOUS. ...ttt ekt ookt e ettt e e kbt e e e a bt e e e st e e e e am b e e e e ambe e e e anbeeaeanbbeaeabbeaeaae 10
6.6. DAt@ QUETY PAIEIMS ...ttt ettt a e bt h et e bt b e e et e e s et e e ehe e e bt et et et e et et n 13
L S = (o T o = To |11V PSSP SR 16
B.8. SEIVICE CONIACT ... ueiieiiiiie ittt o bt e b et e ek et e e bttt e e et et e e bt et e e eab et e e aabn e e e anbneeeabneee st 17
8.9, THME-OUL ...ttt ettt oottt e e b et e ok et e ek et e e sttt e e s bt e e e ea b e b e e ea b e e e e ea b et e e et et e e e bre e e e e e e e e 17
6.10. SEAtE MANAGEIMENT ... .ueiiiiiii e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 18
L o (=Y (T T g Tod S = T o [ o PSPPSR 19
L 2 I = Tg 1 = T o (RO OO P PP UPPUTUPPPPPPRIN 19
6.13. LONG-RUNNING OPEIALIONS ......ueiiiiieeiiiiiittteee e e eeitee et e e e e e sttt e e e e e s e tab et eeeeeesasnab e eteeeesaanaseeeeeeeesaannseeeeeaeeeaannseeneeens
6.14. Security Model.........cccccvvveeeiiiiiiiiineeen,

6.15. API Maturity Model ..........cccooeivvieenennnn.

7. SOAP WEB APl...ccoooiiiiiiiiii

7.1. General Rules..........cccccoviiiiiiiiiieninnenn.

7.2. Schemas.......cccccocvviiiiiciniiiciii,

7.3. Naming and Versioning...........ccccec.....

7.4. Web Service Contract Design...............

7.5. Attaching Policies to WSDL Definitions.

7.6. SOAP — Web Service Security..............

T B - - W Y/ o oI oo 11 -1 £ T PUUPPPPPPPPPPPUPPPPRE

9. CONFORMANCE ...ttt h ekt h e h et bt o bt e ea e e a bt e eh bt e bt e e b et ekt e e bt e eab e e enb e e abbeentne et 27
10, REFERENQCES ... e e e e e e e oo oo oo oo e oo oo oo oo oo e oo oo e e oo e e oo e e e e e e e e e e e e e e e e e e e e e e e aaaeaaaaaaaaaaaaaaaaaaaaaaaaans 27
AV S @ IS =T Lo =T (o [ PP TP UUPPTTPPPP 27
Standards aNd CONVENTIONS .......cciiuiiiiiiiiee ittt e et s b et e e b b et e e bb et e s bt et e s st et e e aabeeeeasbneeeannneeeane 28

1o @11 (oY Ry Ay Y o [ SR 29



CWS/7/3
MpunoxeHue I, cTp. 2

Industry REST APIS and Design GUIOEINES ..........eviiiiieeiiiieiee ettt ettt e e e e e s e e e e e e s snnneeeeeeeeaas 29
(@13 1= £ O PSP UTPPUUPROTRR 29
ANNEX | - LIST OF RESTful WEB SERVICE DESIGN RULES AND CONVENTIONS ......c.ccoiiiiiniiiiieiiiesecesineeee 30
ANNEX 1 — REST 1P VOCADUIAIY.....cceieiiiiiiiiiiee e ittt e e e s ettt e e e e s e sttt e e e e e e e st e eeeeeesssasaeeeeeeesanssssnaaaeeeaanssssneaaaeannn 58
ANNEX 1] - LIST OF SOAP WED API NAMES ..ottt ettt bttt sneesane e 59
ANNEX IV — RESTFUL WEB API GUIDELINES AND MODEL SERVICE CONTRACT ......uuutiiiiiiiiiiiiiiiiiiiinnas 59
2 o) 0= T GOSN 59
ANNEX V - SOAP WEB API MODEL SERVICE CONTRACT ...uuttiiiiiiiiiiiiii s a e 59
ANNEX VI — HIGH LEVEL SECURITY ARCHITECTURE BEST PRACTICES........uuuiiiiiiiii s 60
ANNEX VII — HTTP STATUS CODES .......eiiitiiitit ittt ettt ettt h et sae e e st e be e et e ebeeante e e 60

ANNEX VIII = REPRESENTATION TERMS ... oot e 63



CWS/7/3
MpunoxeHue I, cTp. 3

1. INTRODUCTION

1. This Standard provides recommendations on Application Programming Interface (API) to facilitate the processing
and exchange of Intellectual Property (IP) data in harmonized way over the Web.

2. This Standard is intended to:

— ensure consistency by establishing uniform web service design principles;
— improve data interoperability among web service partners;
— encourage reusability through unified design;

— promote data naming flexibility across business units through a clearly defined namespace policy in associated
XML resources;

— promote secure information exchange;
—  offer appropriate internal business processes as value-added services that can be used by other organizations;
— integrate its internal business processes and dynamically link them with business partners.

2. DEFINITIONS AND TERMINOLOGY
3. For the purpose of this Standard, the expression:

— The term “Hyper Text Transfer Protocol (HTTP)” is intended to refer to the application protocol for distributed,
collaborative, and hypermedia information systems. HTTP is the foundation of data communication for the World
Wide Web. HTTP functions as a request-response protocol in the service oriented computing model.

—  The term “Application Programming Interfaces” (APIl) means software components that provide a reusable
interface between different applications that can easily interact to exchange data.

— The term “Representational State Transfer (REST)” describes a set of architectural principles by which data can be
transmitted over a standardized interface, i.e., HTTP. REST does not contain an additional messaging layer and
focuses on design rules for creating stateless services.

— The term “Simple Object Access Protocol (SOAP)” means a protocol for sending and receiving messages between
applications without confronting interoperability issues. SOAP defines a standard communication protocol (set of
rules) specification for XML-based message exchange. SOAP uses different transport protocols, such as HTTP
and SMTP. The standard protocol HTTP makes it easier for SOAP model to tunnel across firewalls and proxies
without any modifications to the SOAP protocol.

— The term “Web Service” means a method of communication between two applications or electronic machines over
the World Wide Web (WWW) and Web Services are of two kinds: REST and SOAP.

— “RESTful Web API” means a set of Web Services based on REST architectural paradigm and typically use JSON
or XML to transmit data.

—  “SOAP Web API” means a set of SOAP Web Services based on SOAP and mandate the use of XML as the
payload format.

—  The term “Web Services Description Language (WSDL)" means a W3C Standard that is used with the SOAP
protocol to provide a description of a Web Service. This includes the methods a Web Service uses, the
parameters it takes and the means of locating Web Services etc.

— The term RAML refers to the RESTful APl Modelling Language, a language which allows developers to provide a
specification of their API.

— The terms OAS refers to the Open API Specification, a

— The term “Service Contract” (or Web Service Contract) means a document that expresses how the service
exposes its capabilities as functions and resources offered as a published API by the service to other software
programs; the term “REST API documentation” is interchangeably used for the Service Contract for RESTful Web
APlIs.

— The term “Service Provider” means a Web Service software exposing a Web Service.

— The term “Service Consumer” means the runtime role assumed by a software program when it accesses and
invokes a service. More specifically, when the program sends a message to a service capability expressed in the
service contract. Upon receiving the request, the service begins processing and it may or may not return a
corresponding response message to the service consumer.

— The term “camelcase” is either the lowerCamelCase (e.g., applicantName), or the UpperCamelCase (e.g.,
ApplicantName) naming convention.

— The term kebab-case is one of the nhaming conventions where all are lowercase with hyphens “-* separating words,
for example a-b-c.

— The term “Open Standards” means the standards that are made available to the general public and are developed
(or approved) and maintained via a collaborative and consensus driven process. “Open Standards” facilitate
interoperability and data exchange among different products of services and are intended for widespread adoption.

— Uniform Resource Identifier (URI) identifies a resource and Uniform Resource Locator (URL) is a subset of the
URIs that include a network location.

— The term “Entity Tag (ETag)” means an opaque identifier assigned by a web server to a specific version of a
resource found at a URL. If the resource representation at that URL ever changes, a new and different ETag is
assigned. ETags can be compared quickly to determine whether two representations of a resource are the same.


https://en.wikipedia.org/wiki/Application_protocol
https://en.wikipedia.org/wiki/Hypermedia
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Request%E2%80%93response

CWS/7/3
MpunoxeHue |, cTp. 4

— The term “Service Registry” means a network-based directory that contains available services.

— The term “Semantic Versioning” means a versioning scheme where a version is identified by the version number
MAJOR.MINOR.PATCH, where:

*  MAJOR version when you make incompatible API changes,
*  MINOR version when you add functionality in a backwards-compatible manner and
*  PATCH version when you make backwards-compatible bug fixes.

4, In terms of conformance in design rules the following keywords should be interpreted, in the same manner as
defined in para. 8 of WIPO ST.96%, that is:

— MUST: an equivalent to “REQUIRED” or “SHALL", means that the definition is an absolute requirement of the
specification;
— MUST NOT: equivalent to “SHALL NOT", means that the definition is an absolutely prohibited by the specification;

—  SHOULD: equivalent to “RECOMMENDED”, means that there may exist valid reasons for ignoring this item, but the
implications of doing so need to be fully considered;

—  SHOULD NOT: equivalent to “NOT RECOMMENDED”, means that there may exist valid reasons where this behavior
may be acceptable or even useful but the implications of doing so need to be carefully considered; and

—  MAY: equivalent to “OPTIONAL”, means that this item is truly optional, and is only provided as one option selected
from many.

3. NOTATIONS

3.1. General notations
5. The following notations are used throughout this document:

<>: Indicates a placeholder descriptive term that, in implementation, will be replaced by a specific instance value.
“" Indicates that the text included in quotes must be used verbatim in implementation.

— {}: Indicates that the items are optional in implementation.

— Courier font: Indicates keywords or source code.

3.2. Rule identifiers
6. All design rules are normative. Design rules are identified through a prefix of [XX-nn] or [XXY-nn].

(@) The value “XX” is a prefix to categorize the type of rule as follows:

— WS for SOAP Web API design rules
— RS for RESTful Web API design rules
—  CS for both SOAP and RESTful WEB API design rule

(b) The value “Y” is used only for ReSTful design rules and provides further granularity on the type of response
that the rule is related to:

— . “G"indicates it is a general rule for both JSON and XML response;
— “J”indicates it is for a JSON response; and
—  “X"indicates it is an XML response.

(c) The value “nn” indicates the next available number in the sequence of a specific rule type. The number does
not reflect the position of the rule, in particular, for a new rule. A new rule will be placed in the relevant

context. For example, the rule identifier [WS-4] identifies the fourth SOAP Web API design rule. The rule [WS-4]
can be placed between rules [WS-10] and [WS-11] instead of following [WS-3] if that is the most appropriate
location for this rule.

(d) The rule identifier of the deleted rule will be kept while the rule text will be replaced with “Deleted”.

4. SCOPE

7. This Standard aims to guide the Intellectual Property Offices (IPOs) and other Organizations that need to manage,
store, process, exchange and disseminate IP data using Web APIs. Itis intended that by using this Standard, the
development of Web APIs can be simplified and accelerated in a harmonized manner and interoperability among Web APIs
can be enhanced.

1 Please refer to the References chapter



CWS/7/3
MpunoxeHue I, cTp. 5

8. This Standard intends to cover the communications between IPOs and their applicants or data users, and between
IPOs through connections between devices-to-devices and devices-to-software applications.

WEB API A WEB API B
+  Patents Request «  Patents
e Trademarks e Trademarks
«  Designs Response - Designs
. Geographical . Geographical
Request -
Filing »  Filing
Processing Response »  Processing
Publication »  Publication
Mobile Mobile
Laptop Laptop
Desktop Desktop

Fig. 1 Scope of the Standard

9. This Standard is to provide a set of design rules and conventions for RESTful Web APIs and SOAP Web APIs; list of
IP data resources which will be exchanged or exposed; model API documentation or service contract, which can be used for
customization, describing message format, data structure and data dictionary in JSON? and/or XML based on WIPO
Standard ST.96 and mock-up (reference) APIs to be used by IPOs. This Standard provides guidelines for RESTful Web API
in detail and SOAP Web APIs in much less detail on demand.

10. This Standard provides model Service Contracts for SOAP Web APIs using WSDL and, for RESTful Web APIs using
the REST API Modeling Language (RAML) and Open API Specification (OAS). A Service Contract also defines or refers to
data types for interfaces (see the Section “Data Type Convention” below). This Standard recommends three types of
interfaces: REST-XML (XSD), REST-JSON and SOAP-XML (XSD).

11. This Standard excludes the following:
(&) Binding to specific implementation technology stacks and commercial off-the-shelf (COTS) products;

(b) Binding to specific architectural designs (for example, Service Oriented Architecture (SOA) or Microservice
Architecture);

(c) Binding to specific algorithms such as algorithms for the calculation of ETag, i.e., calculation of a unique
identifier for a specific version of a resource (for example, used for caching).

5. WEB API DESIGN PRINCIPLES

12. Both RESTful Web APIs and SOAP Web APIs have proven their ability to meet the demands of big organizations as
well as to service the small-embedded applications in production. When choosing between RESTful and SOAP, the
following aspects can be considered:

—  Security, e.g., SOAP has WS-Security while REST does not specify any security patterns;
— ACID Transaction, .e.g., SOAP has WS-AT specification while REST does not have a relevant specification;

— Architectural style, e.g., Microservices and Serverless Architecture Style use REST while SOA uses SOAP web
services;

—  Flexibility;
— Bandwidth constraints;

2 The WIPO JSON standard is currently under discussion but will be based on WIPO Standard ST.96



CWS/7/3
MpunoxeHue I, cTp. 6

— Guaranteed delivery, e.g. SOAP offers WS-RM while REST does not have a relevant specification.

13. The following service-oriented design principles should be respected when a Web API is designed:

(@) Standardized Service Contract: Standardizing the service contracts is the most important design principle
because the contracts allow governance and a consistent service design. A service contract should be easy to
implement and understand. A service contract consists of metadata that describes how the service provider and
consumer will interact. Metadata also describes the conditions under which those parties are entitled to engage in
an interaction. It is recommended that service contracts include:

— Functional requirements: what functionality the Service provides and what data it will return, or
typically a combination of the two;

— Non-functional requirements: information about the responsibility of the providers for providing their
functionality and/or data, as well as the expected responsibilities of the consumers of that
information and what they will need to provide in return. For example, a consumer’s availability,
security, and other quality of service considerations.

(b)  Service Loose Coupling: Clients and services should evolve independently. Applying this design principle
requires:

—  Service versioning — Consumers bound to a Web API version should not take the risk of unexpected
disruptions due to incompatible API changes.

— The service contract should be independent of the technology details.

(c) Service Abstraction— The service implementation details should be hidden. The API Design should be
independent of the strategies supported by a server. For example, for the REST Web Service, the API resource
model should be decoupled from the entity model in the persistence layer.

(d) Service Statelessness — Services should be scalable.

(e) Service Reusability — A well-designed API should provide reusable services with generic contracts. In this
regard, this Standard provides a model service contract.

(f)  Service Autonomy — The Service functional boundaries should be well defined.
(g) Service Discoverability —Services should be effectively discovered and interpreted.
(h) Service Composability Services can be used to compose other services.

(i)  Using Standards as a Foundation — The API Should follow industry standards (such as IETF, I1SO, and
OASIS) wherever applicable, naturally favoring them over locally optimized solutions.

(J)  Pick-and-choose Principle — It is not required to implement all the API design rules. The design rules should
be chosen based on the implementation of each concrete case.

14. In addition, the following principles should be respected especially with regard to the RESTful Web APIs:
(a) Cacheable: responses explicitly indicate their cacheability;

(b) Resource identification in requests: individual resources are identified in requests; for example using URIs in
Web-based REST systems. The resources themselves are conceptually separate from the representations that
are returned to the client.

(c) Hypermedia as the engine of application state (HATEOAS) - having accessed an initial URI for the REST
application—analogous to an individual accessing the home page of a website—a REST client should then be able
to use server-provided links dynamically to discover all the available actions and resources it needs.

(d) Resource manipulation through representations - when a client holds a representation of a resource,
including any metadata attached, it has enough information to modify or delete the resource.

(e) Self-descriptive messages - each message includes enough metadata to describe how to process the
message content.

(f)  Web API should follow HTTP semantics such as methods, errors etc.

(g) Available to the public - design with the objective that the API will eventually be accessible from the public
internet, even if there are no plans to do so at the moment.

(h) Common authentication - use a common authentication and authorization pattern, preferably based on
existing security components, in order to avoid creating a bespoke solution for each API.

(i) Least Privilege - access and authorization should be assigned to API consumers based on the minimal
amount of access they need to carry out the functions required.



CWS/7/3
MpunoxeHue I, cTp. 7

() Maximize Entropy - the randomness of security credentials should be maximized by using API Keys rather
than username and passwords for API authorization, as API Keys provide an attack surface that is more
challenging for potential attackers.

(k) Performance versus security - balance performance with security with reference to key life times and
encryption / decryption overheads.

6. RESTFUL WEB API

15. A RESTful Web API allows requesting systems to access and manipulate textual representations of Web resources
using a uniform and predefined set of stateless operations.

6.1. URI Components

16. RESTful Web API s use URIs to address resources. According to RFC 3986, an URI syntax should be defined as
follows:

URI = <scheme> ":/[" <authority> "/" <path> {"?" query}
authority = {userinfo@}host{:port}

For example, https://wipo.int/api/vl/patents?sort=id&offset=10
/ / / /

scheme authority path query parameters

17. The forward slash “/” character is used in the path of the URI to indicate a hierarchical relationship between
resources but the path must not end with a forward slash as it does not provide any semantic value and may cause
confusion.

[RSG-01] The forward slash character “/” MUST be used in the path of the URI to indicate a hierarchical relationship
between resources but the path MUST NOT end with a forward slash.

18. URIs are case sensitive except for the scheme and host parts. For example, although
https://wipo.int/api/my-resources/uniqueld and https://wipo. INT/api/my-resources/uniqueld are
the same, https://wipo. int/api/my-resources/uniqueid is not. For the resource names, the kebab-case and the
lowerCamelCase conventions provide good readability and maps the resource names to the entities in the programming
languages with simple transformation. For the query parameters, the lowerCamelCase should be used. For example,
https://wipo.int/api/vl/inventors?firstName=John. Resource names and query parameter are all case
sensitive. Note, that resource names and query parameter names may be abbreviated.

19. A RESTful Web APl may have arguments:
— In the query parameter; for example, /inventors?id=1;
— In the matrix parameter; for example, /inventors;id=1;
— Inthe URI path segment parameter, for example, /inventors/1; and

— Inthe request payload such as part of a JSON body.

20. Except of the aforementioned argument types, which are part of the URI, an argument can also be part of the
request payload.

[RSG-02] Resources name MUST be consistent in their naming pattern.

[RSG-03] Resource names in the request SHOULD kebab-case naming conventions they MAY be abbreviated.
[RSG-04] Query parameters MUST be consistent in their naming pattern

[RSG-05] Query parameters SHOULD use the lowerCamelCase convention and they MAY be abbreviated.

21. A Web API endpoint must comply with IETF RFC 3986 and should avoid potential collisions with page URLSs for
the website hosted on the root domain. A Web API needs to have one exact entry point to consolidate all requests. In
general, there are two patterns of defining endpoints:

— As the first path segment of the URI, for example: https://wipo.int/api/v1/; and
— As subdomain, for example: https://api.wipo.int/vl/

[RSG-06] The URL pattern for a Web API MUST contain the word “api” in the URI.



CWS/7/3
MpunoxeHue I, cTp. 8

22. Matrix parameters are an indication that the API is complex with multiple levels of resources and sub-resources.
This goes against the service-oriented design principles, previously defined. Moreover, matrix parameters are not standard
as they apply to a particular path element while query parameters apply to the request as a whole. An example of matrix
parameters is the following: https://api .wipo. int/vl/path;paraml=valuel;param2=value2.

[RSG-07] Matrix parameters MUST NOT be used.

6.2. Status Codes

23. A Web API must consistently apply HTTP status codes as described in IETF RFCs. HTTP status codes should be
used among the ones listed in the standard HTTP status codes (RFC 7807) reproduced in Annex VII.

[RSG-08] A Web APl MUST consistently apply HTTP status codes as described in IETF RFCs
[RSG-09] The recommended codes in Annex VI SHOULD be used by a Web API to classify the error.

6.2.1 Pick-and-choose Principle

24. A Service Contract should be tolerant to unexpected parameters (in the request, using query parameters) but raise
an error in case of malformed values on expected parameters.

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status code “400 Bad Request”. The
error payload MUST indicate the erroneous value.

[RSG-11] If the API detects syntactically correct argument names (in the request or query parameters) that are not
expected, it SHOULD ignore them.

[RSG-12] If the API detects valid values that require features to not be implemented, it MUST return the HTTP
status code “501 Not Implemented”. The error payload MUST indicate the unhandled value.

6.3. Resource Model

25. An |IP data model should be divided into bounded contexts following a domain-driven design approach. Each
bounded context must be mapped to a resource. According to the design principles, a Web API resource model should

be decoupled from the data model. A Web API should be modeled as a resource hierarchy to leverage the hierarchical
nature of the URI to imply structure (association or composition or aggregation), where each node is either a simple (single)
resource or a collection of resources.

26. In this hierarchical resource model, the nodes in the root are called ‘top-level nodes’ and all of the nested resources
are called ‘sub-resources’. Sub-resources should be used only to imply compositions, i.e., resources that cannot be top-
level resources, otherwise there would be multiple way of retrieving the same entities. Such sub-resources, implying
association, are called sub-collections. The other hierarchical structures, i.e., association and aggregation, should be
avoided to avoid complex APIs and duplicate functionality.

27. The endpoint always determines the type of the response. For example, the endpoint
https://wipo.int/api/vl/patents returns always responses regarding patent resources. The endpoint
https://wipo.int/api/vl/patents/1/inventor returns always responses regarding inventor resources. However
the endpoint https://wipo. int/api/vl/inventors is not allowed because the inventor resource should be cannot be
standalone.

28. Only top-level resources, i.e. with a maximum of one level should be used, otherwise these APIs will be very
complex to implement. For example, https://wipo.int/api/vl/patents?inventorld=12345 should be used
instead of https://wipo.int/api/vl/inventors/12345/patents.

[RSG-13] A Web APl SHOULD only use top-level resources. If there are sub-resources, they should be collections
and imply an association. An entity should be accessible as either top-level resource or sub-resource but not
using both ways.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or otherwise a sub-resource.

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve nested resources.



CWS/7/3
MpunoxeHue I, cTp. 9

29. A Web API should support projection. If only specific attributes from the retrieved data are required, a projection
query parameter must be used instead of URL paths. The query parameter should be formed as follows:
“Fields=""<comma-separated list of attribute names>. A projection query parameter is easier to implement
and can retrieve multiple attributes. For example, with a JSON response:

GET https://wipo.int/api/vl/inventors/id12345?Fields=FirstName, lastName
200 OK

“FirstName”: “My Ffirst name”,
"lastName': "My last name"

[RSG-16] A query parameter SHOULD be used instead of URL paths in case that a Web API supports projection
following the format: “Fields="<comma-separated list of attribute names>.

30. There are types® of Web APIs: the CRUD (Create, Read, Update, and Delete) Web API and the Intent Web API.
CRUD Web APIs model changes to a resource, i.e., create/read/update/delete operations. Intent Web APIs by contrast
model business operations, e.g., renew/register/publish. CRUD operations should use nouns and Intent Web APIs should
use verbs for the resource names. CRUD Web APIs are the most common but both can be combined for example, the
service consumer could use an Intent Web APl modeling business operation, which would orchestrate the execution of one
or more CRUD Web APIs service operations. Using CRUD Web API, the service caller has to orchestrate the business
logic but with Intent Web APIs it is the service provider who orchestrates the business logic. CRUD Web APIs are not
atomic when compared with Intent Web APIs*.

—  For example, the owner of the IP right wants to locate their patent and renew it. This is a business operation so a
CRUD Web API would model this operation in a non-atomic process, requiring two actions such as:

GET https://wipo.int/api/vl/patents/id12345
{

}
POST https://wipo.int/api/vl/renewals
{

)

— The previous example could also be modeled with an atomic service call using an Intent Web API such as:

[ POST https://wipo.int/api/vl/findAndRenew/id12345 |

31. The type of Web API should then place constraints on how the resources are named to provide an indication on
which is being used. Note, that resource names that are localized due to business requirements may be in other languages.

[RSG-17] Resource names SHOULD be nouns for CRUD Web APIs and verbs for Intent Web APIs.

[RSG-18] If resource name is a noun it SHOULD always use the plural form. Irregular noun forms SHOULD NOT
be used. For example, /persons should be used instead of /people.

[RSG-19] Resource names, segment and query parameters MUST be composed of words in the English language,
using the primary English spellings provided in the Oxford English Dictionary. Resource names that are localized
due to business requirements MAY be in other languages.

3 Alternatively we could classify APIs according to their archetype. See for instance: “REST API Design Rulebook: Designing
Consistent RESTful Web Service Interfaces”

4 An Intent API also enables the application of the Command Query Responsibility Segregation (CQRS) pattern. CQRS is a pattern,
where you can use a different model to update information than the model you use to read information. The rationale is that for
many problems, particularly in more complicated domains, having the same conceptual model for commands and queries leads to a
more complex model that is not beneficial.



CWS/7/3
MpunoxeHwue I, ctp. 10

6.4. Supporting multiple formats

32. Different service consumers may have differing requirements for the data format of the service responses. The
media type of the data should be decoupled from the data itself, allowing the service to support a range of media types.
Therefore, a Web API must support content type negotiation using the request HTTP header Accept and the response
HTTP header Content-Type as required by IETF RFC 7231. Additionally, a Web API may support other ways of content
type negotiation such as query parameter (for example ?format) or URL suffix (for example . json).

[RSG-20] A Web API SHOULD use for content type negotiation the request HTTP header Accept and the
response HTTP header Content-Type.

33. APIs must support XML and JSON requests and responses. For XML, responses must be compliant with WIPO
Standard using XML such as ST.96°. A consistent mapping between these two formats should be used. This Standard
recommends the BadgerFish convention due to its simplicity until the JSON specification is provided.

[RSG-21] A Web APl MUST support content type negotiation following IETF RFC 7231.
[RSG-22] JSON format MUST be assumed when no specific content type is requested.

[RSG-23] A Web APl SHOULD return the status code “406 Not Acceptable” if a requested format is not
supported.

[RSG-24] A Web API SHOULD reject requests containing unexpected or missing content type headers with the
HTTP status code “406 Not Acceptable” or “415 Unsupported Media Type”.

[RSX-25] The requests and responses (haming convention, message format, data structure, and data dictionary)
SHOULD refer to WIPO Standard ST.96.

[RSJ-26] JSON object property names SHOULD be provided in lowerCamelCase, e.g., applicantName.
[RSX-27] XML component names SHOULD be provided in UpperCamelCase.
[RSG-28] A Web API MUST support at least XML or JSON.

6.5. HTTP Methods

34. HTTP Methods (or HTTP Verbs) are a type of function provided by a uniform contract to process resource identifiers
and data. HTTP Methods must be used as they were intended to according the standardized semantics as specified in IETF
RFC 7231 and 5789, namely:

—  GET —retrieve data

— HEAD - like GET but without a response payload

—  POST - submit new data

—  PUT —update

—  PATCH - partial update

— DELETE — delete data

— TRACE - echo

— OPTIONS — query verbs that the server supports for a given URL

35. The uniform contract establishes a set of methods to be used by services within a given collection or inventory.
HTTP Methods tunneling may be useful when HTTP Headers are rejected by some firewalls.

36. HTTP Methods may follow the ‘pick-and-choose’ principle, which states that only the functionality needed by the
target usage scenario should be implemented. Some proxies support only POST and GET methods. To overcome these
limitations, a Web APl may use a POST method with a custom HTTP header “tunneling” the real HTTP method. HTTP
Methods may also follow the pick-and-choose principle, which states that only the functionality needed by the target usage
scenario should be implemented.

[RSG-29] HTTP Methods MUST be restricted to the HTTP standard methods POST, GET, PUT, DELETE, OPTIONS,
PATCH, TRACE and HEAD, as specified in IETF RFC 7231 and 5789.

[RSG-30] HTTP Methods MAY follow the pick-and-choose principle, which states that only the functionality needed
by the target usage scenario should be implemented.

[RSG-31] Some proxies support only POST and GET methods. To overcome these limitations, a Web APl MAY
use a POST method with a custom HTTP header “tunneling” the real HTTP method. The custom HTTP header X-
HTTP-Method SHOULD be used.

5 A JSON specification is currently under discussion at WIPO and will be available as a Standard in the future.



CWS/7/3
MpunoxeHwue I, cTp. 11

[RSG-32] If a HTTP Method is not supported, the HTTP status code “405 Method Not Allowed” SHOULD be
returned.

37. In some use cases, multiple operations should be supported at once.

[RSG-33] A Web API SHOULD support batching operations (aka bulk operations) in place of multiple individual
requests to achieve latency reduction. The same semantics should be used for HTTP Methods and HTTP status
codes. The response payload SHOULD contain information about all batching operations. If multiple errors occur,
the error payload SHOULD contain information about all the occurrences (in the details attribute). All bulk
operations SHOULD be executed in an atomic operation.

GET

38. According to IETF RFC 2616, the HTTP protocol does not place any a prior limit on the length of a URI. On the
other hand, servers should be cautious about depending on URI lengths above 255 bytes, because some older client or
proxy implementations may not properly support these lengths. In the case where this limit is exceeded, it is recommended
that named queries are used. Alternatively, a set of rules which determine how to convert between and GET and a POST
must be specified. According to the IETF RFC 2616, a GET request must be idempotent, in that the response will be the
same no matter how many times the request is run.

[RSG-34] For an end point which fetches a single resource, if a resource is not found, the method GET MUST
return the status code “404 Not Found”. Endpoints which return lists of resources will simply return an empty
list.

[RSG-35] If a resource is retrieved successfully, the GET method MUST return 200 OK.
[RSG-36] A GET request MUST be idempotent.

[RSG-37] When the URI length exceeds the 255 bytes, then the POST method SHOULD be used instead of GET
due to GET limitations, or else create named queries if possible.

HEAD

39. When a client needs to learn information about an operation, they can use HEAD. HEAD gets the HTTP header you
would get if you made a GET request, but without the body. This lets the client determine caching information, what content-
type would be returned, what status code would be returned. A HEAD request MUST be idempotent according to the

IETF RFC 2616.

[RSG-38] A HEAD request MUST be idempotent.
[RSG-39] Some proxies support only POST and GET methods. A Web API SHOULD support a custom HTTP
request header to override the HTTP Method in order to overcome these limitations.

POST
40. When a client needs to create a resource, they can use POST. For example,

POST https://wipo.int/vl/patents

{ "title": "Patent Title" }

Response:

201 Created

Location: https://wipo.int/vl/patents/id12345
{ "id": 1d12345, "title": "Patent Title" }

[RSG-40] A POST request MUST NOT be idempotent according to the IETF RFC 2616.

[RSG-41] If the resource creation was successful, the HTTP header Location SHOULD contain a URI (absolute
or relative) pointing to a created resource.

[RSG-42] If the resource creation was successful, the response SHOULD contain the status code “201
Created”.

[RSG-43] If the resource creation was successful, the response payload SHOULD by default contain the body of
the created resource, to allow the client to use it without making an additional HTTP call.

PUT

41. When a client needs to replace an existing resource entirely, they can use PUT. Idempotent characteristics of PUT
should be taken into account. A PUT request has an update semantic (as specified in IETF RFC 7231) and an update or
insert semantic.

[RSG-44] A PUT request MUST be idempotent .
[RSG-45] If a resource is not found, PUT MUST return the status code “404 Not Found”.




CWS/7/3
MpunoxeHwue I, cTp. 12

[RSG-46] If a resource is updated successfully, PUT MUST return the status code “200 OK”’ if the updated
resource is returned or a “204 No Content” if it is not returned.

PATCH

42. When a client requires a partial update, they can use PATCH. Idempotent characteristics of PATCH should be taken
into account. For example:

PATCH https://wipo.int/vl/patents/id12345

If-Match:456

Content-Type: application/merge-patch+json

{ "Title": "Patent Title" }

43. PATCH must not be idempotent according to IETF RFC 2616. . In order to make it idempotent, the APl may follow
the IETF RFC 5789 suggestion of using optimistic locking.

[RSG-47] A PATCH request MUST NOT be idempotent.

[RSG-48] If a Web API implements partial updates, idempotent characteristics of PATCH SHOULD be taken into
account. In order to make it idempotent the API MAY follow the IETF RFC 5789 suggestion of using optimistic
locking.

[RSG-49] If a resource is not found PATCH MUST return the status code “404 Not Found”.

[RSJ-50] If a Web API implements partial updates using PATCH, it MUST use the JSON Merge Patch format to
describe the partial change set, as described in IETF RFC 7386 (by using the content type
application/merge-patch+json.

DELETE

44, When a client needs to delete a resource, they can use DELETE. A DELETE request must not be idempotent
according to the IETF RFC 2616

[RSG-51] A DELETE request MUST NOT be idempotent.

[RSG-52] If a resource is not found, DELETE MUST return the status code “404 Not Found”.

[RSG-53] If a resource is deleted successfully, DELETE MUST return the status “200 OK™ if the deleted resource
is returned or “204 No Content” if it is not returned.

TRACE

45, The TRACE method does not carry APl semantics and is used for testing and diagnostic information according to
IETF RFC 2616, for example for testing a chain of proxies. TRACE allows the client to see what is being received at the
other end of the request chain and uses that data. A TRACE request MUST NOT be idempotent according to the IETF
RFC 2616

[RSG-54] The final recipient is either the origin server or the first proxy or gateway to receive a Max-Forwards
value of zero in the request. A TRACE request MUST NOT include a body.

[RSG-55] A TRACE request MUST NOT be idempotent.
[RSG-56] The value of the Via HTTP header field MUST act to track the request chain.

[RSG-57] The Max-Forwards HTTP header field MUST be used to allow the client to limit the length of the
request chain.

[RSG-58] If the request is valid, the response SHOULD contain the entire request message in the response body,
with a Content-Type of "message/http".

[RSG-59] Responses to TRACE MUST NOT be cached.
[RSG-60] The status code “200 OK” SHOULD be returned to TRACE.

OPTIONS

46. When a client needs to learn information about a Web API, they can use OPTIONS. OPTIONS do not carry API
semantics. An OPTIONS request MUST be idempotent according to the IETF RFC 2616, Custom HTTP Headers.



CWS/7/3
MpunoxeHwue I, cTp. 13

[RSG-61] An OPTIONS request MUST be idempotent.

47. It is a common practice for a Web API using custom HTTP headers to provide "X-" as a common prefix, which RFC
6648 deprecates and discourages to use.

[RSG-62] Custom HTTP headers starting with the “X-" prefix SHOULD NOT be used.

[RSG-63] Custom HTTP headers SHOULD NOT be used to change the behavior of HTTP Methods unless it is to
resolve any existing technical limitations (for example, see [RSG-39]).

[RSG-64] The naming convention for custom HTTP headers is <organization>-<header name>, where
<organization> and <header> SHOULD follow the kebab-case convention.

48. According to the service-oriented design principles, clients and services should evolve independently. Service
versioning enables this. Common implementations of service versioning are: Header Versioning (by using a custom
header), Query string versioning (for example, ?v=v1), Media type versioning (for example Accept:
application/vnd.vl+json) and URI versioning (for example Zapi/vl/inventors).

[RSG-65] A Web APl SHOULD support service versioning. URI versioning SHOULD be used for service versioning
such as /v<version number> (for example Zapi/v1l/inventors). Header Versioning, Query string
versioning and Media type versioning SHOULD NOT be used.

49. According to the service-oriented design principles, service providers and consumers should also evolve
independently. The service consumer should not be affected by minor (backward compatible) changes by the service
provider. Therefore, service versioning should use only major versions. For internal non-published APIs (for example, for
development and testing) minor versions may also be used such as Semantic Versioning.

[RSG-66] A versioning-numbering scheme SHOULD be followed considering only the major version number (for
example /7v1).

50. Service endpoint identifiers include information that can change over time. It may not be possible to replace all
references to an out-of-date endpoint, which can lead to the service consumer being unable to further interact with the
service endpoint. Therefore, the service provider may return a redirection response. The redirection may be temporary or
permanent. The following HTTP status codes are available:

Permanent Temporary
Allows changing the request method 301 302
from POST to GET
Doesn't allow changing the request 308 307
method from POST to GET

Since 301 and 302 are more generic they are preferred to increase flexibility and overcome any unnecessary complexity.

[RSG-67] API service contracts MAY include endpoint redirection feature. When a service consumer attempts to invoke
a service, a redirection response may be returned to tell the service consumer to resend the request to a new endpoint.
Redirections MAY be temporary or permanent:

—  Temporary redirect - using the HTTP response header Location and the HTTP status code “302
Found” according to IETF RFC 7231, or

— Permanent redirect - using the HTTP response header Location and the HTTP status code “301 Moved
Permanently” according to IETF RFC 7238.

6.6. Data Query Patterns
Pagination Options

51. Pagination is a mechanism for a client to retrieve data in pages. Using pagination, we prevent overwhelming the
service provider with resource demanding requests according to the design principles. The server should enforce a default
page size in case the service consumer has not specified one. Paginated requests may not be idempotent, i.e., a paginated
request does not create a snapshot of the data.

[RSG-68] A Web APl SHOULD support pagination.

[RSG-69] Paginated requests MAY NOT be idempotent.

[RSG-70] A Web APl MUST use query parameters to implement pagination.



CWS/7/3
MpunoxeHue I, ctp. 14

[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination.

[RSG-72] Query parameters limit=<number of items to deliver> and offset=<number of items
to skip> SHOULD be used, where limit is the number of items to be returned (page size), and skip the
number of items to be skipped (offset). If no page size limit is specified, a default SHOULD be defined - global or
per collection; the default offset MUST be zero “0”. For example, the following is a valid URL:

https://wipo.int/api/vl/patents?limit=10&offset=20

[RSG-73] The limit and the offset parameter values SHOULD be included in the response.

Sorting

52. Retrieving data may require the data to be sorted by ascending or descending order. A multi-key sorting criterion
may also be used. Sorting is determined through the use of the sort query string parameter. The value of this parameter
is a comma-separated list of sort keys and sort directions that can optionally be appended to each sort key, separated by the
colon ' character. The supported sort directions are either ‘asc” for ascending or ‘desc” for descending. The client may
specify a sort direction for each key. If a sort direction is not specified for a key, then a default direction is set by the server.

For example:
(@) Only sort keys specified:
sort=keyl,key?2
‘keyl’ is the first key and ‘key2’ is the second key and sort directions are defaulted by the server
(b) Some sort directions specified:
sort=keyl:asc,key2

where “keyl” is the first key (ascending order) and ‘key2” is the second key (direction defaulted by the server,
i.e., any sort key without a corresponding direction is defaulted.).

(c) each keys with specified directions:
sort=keyl:asc,key2:desc
where ‘keyl” is the first key (ascending order) and ‘key2” is the second key (descending order).

53. In order to specify multi-attribute criteria sorting, the value of a query parameter may be a comma-separated list of
sort keys and sort directions, with either ‘asc’ for ascending or ‘desc’ for descending which may be appended to each sort
key, separated by the colon ‘' character.

[RSG-74] A Web API MUST support sorting.

[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter MUST be used. The value of this
parameter is a comma-separated list of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon *:’ character. The default direction MUST
be specified by the server in case that a sort direction is not specified for a key.

[RSG-76] A Web APl SHOULD return the sorting criteria in the response.

Expand

54. A service consumer may control the amount of data it receives by expanding a single field into larger objects. Rather
than simply asking for a linked entity ID to be included, a service caller can request the full representation of the entity be
expanded within the results. Service calls may use expansions to get all the data they need in a single API request. For
example:

GET https://wipo.int/api/vl/patents?id=id12345&expand=applicant

200 OK

{ "title": “Patent title”, “applicant”: {“name”:"applicant name”, .}, .}
In comparison to (if using hypermedia):




CWS/7/3
MpunoxeHwue I, cTp. 15

GET https://wipo.int/api/vl/patents?id=i1d12345

200 OK

{ "title": “Patent title”, “applicant”: {“href’:”
https://wipo.int/api/vl/link/to/applicants 7}, .. }

55. A Web API may support expanding the body of returned content.

[RSG-77] A Web APl MAY support expanding the body of returned content. The query parameter
expand=<comma-separated list of attributes names> SHOULD be used.

Number of Items

56. In some use cases, the consumer of the APl may be interested in the number of items in a collection. This is very
common when combined with pagination in order to know the total number of items in the collection. For example,

GET https://wipo.int/api/vl/patents?count=true&limit=3&offset=4

200 OK

{"count": 100, ... }

57. As one alternative, a Web APl may support returning the number of items in a collection inline, i.e., as the part of the
response that contains the collection itself. Alternatively, it may form part of a metadata envelope, outside the main body of
the response.

[RSG-78] A Web APl MUST support returning the number of items in a collection.
[RSG-79] A query parameter MUST be used to support returning the number of items in a collection.
[RSG-80] The query parameter count SHOULD be used to return the number of items in a collection.

[RSG-81] A Web API MAY support returning the number of items in a collection inline, i.e., as the part of the
response that contains the collection itself. A query parameter MUST be used.

[RSG-82] The query parameter count=true SHOULD be used. If not specified, count should be set by default
to false.

[RSG-83] If a Web API supports pagination, it SHOULD support returning inline in the response the number of the
collection (i.e., the total number of items of the collection).

Complex Search Expressions

58. For retrieving data with only a few search criteria, the query parameters are adequate. If there is a use case where
we should search for data using complex search expressions (with multiple criteria, Boolean expressions and search
operators) then the API has to be designed using a more complex query language. A query language has to be supported
by a search grammar.

59. The Contextual Query Language (CQL) is a formal language for representing queries to information retrieval
systems such as search engines, bibliographic catalogs and museum collection information. Based on the semantics of
Z39.50¢, its design objective is that queries must be readable and writable and that the language is intuitive and maintains
the expression of more complex query languages. This is just one option recommended for use, as it is used broadly by
industry.

[RSG-84] When a Web API supports complex search expressions then a query language SHOULD be specified,
such as CQL.

[RSG-85] A Service Contract MUST specify the grammar supported (such as fields, functions, keywords, and
operators).

[RSG-86] The query parameter “q”” MUST be used.

6 Please refer the References chapter



CWS/7/3
MpunoxeHue I, cTp. 16

6.7. Error Handling

60. Error responses should always use the appropriate HTTP status code selected from the standard list of HTTP status
codes (REC 7807), reproduced in Annex VII. When the requestor is expecting JSON, return error details in a common data
structure. Unless the project requires otherwise, there is no need to define application-specific error codes. Stack trace and
other debugging-related information should not be present in the error response body in production environments.

Error Payload

61. Error handling is carried out on two levels: on the protocol level (HTTP) and on the application level (payload
returned). On the protocol level, a Web API returns an appropriate HTTP status code and on the application level, a Web
API returns a payload reporting the error in adequate granularity (mandatory and optional attributes).

62. With regard to the mandatory and optional attributes for the application level error handling,

(a) the following code and message attributes are mandatory and while the message may change in the future,
the code will not change; it is fixed and will always refer to this particular problem:

— code (integer) - Technical code of the error situation to be used for support purposes

— message (string) - User-facing (localizable) message describing the error request as requested by
the HTTP header Accept-Language(see RS-112)

(b) The following attributes are conditionally mandatory:

— detalils - If error processing requires nesting of error responses, it must use the details field for
this purpose. The details field must contain an array of JSON objects that shows code and
message properties with the same semantics as described above.

(c) The following attributes are optional:

— target - The error structure may contain a target attribute that describes a data element (for
example, a resource path).

— status - Duplicate of the HTTP status code to propagate it along the call chain or to write it in
the support log without the need to explicitly add the HTTP status code every time.

— morelnfo - Array of links containing more information about the error situation, for example,
giving hints to the end user.

— internalMessage - A technical message, for example, for logging purposes.

63. Error handling should follow HTTP standards (RFC 2616). A minimum error payload is recommended, for example for
a JSON response:

404 Not Found
{
"error'”: {
“'code': ''03543762",
""message': "'Patent with ID 12345 not found",
"target': '"/api/vl/patents/12345",
"details": [{
"code': '012312415",
"message': "Empty result set”
H
}
}

[RSG-87] On the protocol level, a Web APl MUST return an appropriate HTTP status code selected from the list of
standard HTTP Status Codes.

[RSJ-88] On the application level, a Web API MUST return a payload reporting the error in adequate granularity.
The code and message attributes are mandatory, the detai I's attribute is conditionally mandatory and target,
status, morelnfo, and internalMessage attributes are optional.

[RSG-89] Errors MUST NOT expose security-critical data or internal technical details, such as call stacks in the
error messages.

[RSG-90] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST NOT be used to carry error
messages.


https://tools.ietf.org/html/rfc7807

CWS/7/3
MpunoxeHwue I, cTp. 17

Correlation ID

64. Typically consuming a service cascades to triggering multiple other services. There should be a mechanism to
correlate all the service activations in the same execution context. For example, including the correlation ID in the log
messages, as this uniquely identifies the logged error.

[RSG-91] Every logged error SHOULD have a unique Correlation ID. A custom HTTP header SHOULD be used.

6.8. Service Contract

65. REST is not a protocol or an architecture, but an architectural style with architectural properties and architectural
constraints. There are no official standards for REST API contracts. This Standard refers to API documentation as a REST
Service Contract. The Service Contract is based on the following three fundamental elements:

(@) Resource identifier syntax — how can we express where the data is being transferred to or from?
(b) Methods — what are the protocol mechanisms used to transfer the data?

(c) Mediatypes — what type of data is being transferred? Individual REST services use these elements in
different combinations to expose their capabilities. Defining a master set of these elements for use by a collection
(or inventory) of services makes this type of service contract "uniform".

[RSG-92] A Service Contract format MUST include the following:

— APl version;

— Information about the semantics of API elements;
— Resources;

— Resource attributes;

—  Query Parameters;

—  Methods;

— Media types;

—  Search grammar (if one is supported);
—  HTTP Status Codes;

—  HTTP Methods;

— Restrictions and distinctive features;
—  Security (if any).

[RSG-93] A Service Contract format SHOULD include requests and responses in XML schema or JSON Schema
and examples of the API usage in the supported formats, i.e., XML or JSON.

[RSG-94] A REST APl MUST provide APl documentation as a Service Contract.

[RSG-95] A Web API implementation deviating from this Standard MUST be explicitly documented in the Service
Contract. If a deviating rule is not specified in the Service Contract, it MUST be assumed that this Standard is
followed.

[RSG-96] A Service Contract MUST allow API client skeleton code generation.

[RSG-97] A Service Contract SHOULD allow server skeleton code generation.

66. Web API documentation can be written for example in RESTful API Modeling Language (RAML), Open API
Specification (OAS) and WSDL. As only RAML fully supports both XML and JSON request/response validation (by using
XSD schemas and JSON schemas), this Standard recommends RAML”.

[RSG-98] A Web API documentation SHOULD be written in RAML or OAS. Custom documentation formats
SHOULD NOT be used.

6.9. Time-out

67. According to the service-oriented design principles, the server usage should be limited.

[RSG-98] A Web API consumer SHOULD be able to specify a server timeout for each request; a custom HTTP
header SHOULD be used. A maximum server timeout SHOULD be also used to protect server resources from over-
use.

" OAS is a specification. It also supports Markdown but RAML does not. On the other hand, although both OAS and RAML support
JSON Schema validation for the requests and responses, OAS does not support XSDs. Therefore, in the future, when OAS is
feature-complete it may be recommended.



CWS/7/3
MpunoxeHwue I, cTp. 18

6.10. State Management

68. If development proceeds following the REST principles, state management must be dealt with on the client side,
rather than on the server, since REST APIs are stateless. For example, if multiple servers implement a session, replication
should be discouraged.

Response Versioning

69. Retrieving multiple times the same data set may result in bandwidth consumption if the data set has not been
modified between the requests. Data should be conditionally be retrieved only if it has not been modified. This can be done
with Content-based Resource Validation or Time-based Resource Validation. If using response versioning, a service
consumer may implement optimistic locking.

[RSG-99] A Web APl SHOULD support conditionally retrieving data, to ensure only data which is modified will be
retrieved. Content-based Resource Validation SHOULD be used because it is more accurate.

[RSG-100] In order to implement Content-based Resource Validation the ETag HTTP header SHOULD be used in
the response to encode the data state. Afterward, this value SHOULD be used in subsequent requests in the
conditional HTTP headers (such as If-Match or If-None-Match). If the data has not been modified since the request
returned the ETag, the server SHOULD return the status code “304 Not Modified” (if not modified). This
mechanism is specified in IETF RFC 7231 and 7232.

[RSG-101] In order to implement Time-based Resource Validation the Last-Modified HTTP header SHOULD be
used. This mechanism is specified in IETF RFC 7231 and 7232.

[RSG-102] Using response versioning, a service consumer MAY implement Optimistic Locking.

Caching

70. A Web API implementation should support cache handling in order to save bandwidth, in compliance with the IETF
RFC 7234.

[RSG-103] A Web API MUST support caching of GET results; a Web APl MAY support caching of results from other
HTTP Methods.

[RSG-104] The HTTP response headers Cache-Control and Expires SHOULD be used. The latter MAY be
used to support legacy clients.

Managed File Transfer

71. Transferring (i.e., downloading or uploading) large files has a high probability of causing a network interruption or
some other transmission failure. It also consumes a large amount of memory for both the service provider and service
consumer. Therefore, it is recommended to transfer large files in multiple chunks with multiple requests. This option also
provides an indication of the total download or upload progress. The partial transfer of large files should resume support.
The service provider should advertise if it supports the partial transfer of large files.®

72. There are two approaches for implementing this type of transfer: the first is to use a Transfer-Encoding:
chunked header and the second using the Content-Length header. These headers should not be used together.
Content-Length indicates the full size of the file transferred, and therefore the receiver will know the length of the body
and will be able to estimate the download completion time. The Transfer-Encoding: chunked header is useful for
streaming infinitely bounded data, such as audio or video, but not files. It is recommended to use the Content-Length
header for downloading as the server utilization is low in comparison to Transfer-Encoding: chunked. For
uploading, the Transfer-Encoding: chunked header is recommended.

A Web API should advertise if it supports partial file downloads by responding to HEAD requests and replying with the HTTP
response headers: Accept-Ranges and Content-Length. The former should indicate the unit that can be used to define
a range and should never be defined as’ none’. The latter indicates the full size of the file to download.

[RSG-105] A Web API SHOULD advertise if it supports partial file downloads by responding to HEAD requests and
replying with the HTTP response headers Accept-Ranges and Content-Length.

73. A Web API that supports downloading large files should support partial requests according to IETF RFC 7232, i.e.,:

— The service consumer asking for a range should use the HTTP header Range.
—  The service provider response should contain the HTTP headers Content-Range and Content-Length.

8 The service provider may return the location of the file and then the service consumer can call a directory service to download the
file. At the end, a partial file download is required. This paragraph does not take into account non-REST protocols such as FTP or
SFTP or rsync.



CWS/7/3
MpunoxeHwue I, cTp. 19

— The service provider response should have the HTTP status 206 Partial Content in case of a successful
range request. In case of a range request that is out of bounds (range values overlap the extent of the resource),
the server responds with a “416 Requested Range Not Satisfiable” status. In case range requested are
not supported, the “200 OK”” status is sent back from a server.

[RSG-106] A Web API SHOULD support partial file downloads. Multi-part ranges SHOULD be supported.

74. Multipart ranges may also be requested if the HTTP header Content-Type: multipart/byteranges;
boundary=XXXXX is used. A range request may be conditional if it is combined with ETag or 1f-Range HTTP Headers.

75. There is not any IETF RFC for large files upload. Therefore, in this Standard we do not provide any implementation
recommendation for large file uploads.

[RSG-107] A Web API SHOULD advertise if it supports partial file uploads.
[RSG-108] A Web API SHOULD support partial file uploaded. Multi-part ranges SHOULD be supported.

76. The IETF RFC 2616 does not impose any specific size limit for requests. The API Service Contract should specify
the maximum limit for the requests. Moreover, on runtime the service provider should indicate to the service consumer if the
allowed maximum limit has been exceeded.

[RSG-109] The service provider SHOULD return with HTTP response headers the HTTP header “413 Request
Entity Too Large” in case the request has exceeded the maximum allowed limit. A custom HTTP header MAY
be used to indicate the maximum size of the request.

6.11. Preference Handling

77. A service provider may allow a service consumer to configure values and influence how the former processes the
requests of the latter. A standard means for implementing preference handling is outlined in IETF RFC 7240.

[RSG-110] If a Web API supports preference handling, it SHOULD be implemented according to IETF RFC 7240,
i.e., the request HTTP header Prefer SHOULD be used and the response HTTP header Preference-Applied
SHOULD be returned (echoing the original request).

[RSG-111] If a Web API supports preference handling, the nomenclature of preferences that MAY be set by using
the Prefer header MUST be recorded in the Service Contract.

6.12. Translation
78. A service consumer may request responses in a specific language if the service provider supports it. A standard
specification for handling of a set of natural languages is outlined in IETF TFC 7231.

[RSG-112] If a Web API supports localized data, the request HTTP header Accept-Language MUST be supported
to indicate the set of natural languages that are preferred in the response as specified in IETF RFC 7231.

6.13. Long-Running Operations

79. There are cases, where a Web API may involve long running operations. For instance, the generation of a PDF by
the service provider may take some minutes. This paragraph recommends a typical message exchange pattern to
implement such cases, for example:

/7 ()
GET https://wipo.int/api/vl/patents
Accept: application/pdf

77 ()
HTTP/1.1 202 Accepted
Location: https://wipo.int/api/vl/queues/12345

/7 (c1)
GET https://wipo.int/api/vl/queues/12345

HTTP/1.1 200 OK

// (c2)

GET https://wipo.int/api/v1l/queues/12345
HTTP/1.1 303 See Other

Location: https://wipo.int/api/vl/path/to/pdf

77 (c3)
GET https://wipo.int/api/vl/path/to/pdf




CWS/7/3
MpunoxeHue I, cTp. 20

80. If an API supports long-running operations, then they should be performed asynchronously to ensure the user is not
made to wait for a response. The rule below sets out a recommended approach for implementation.

[RSG-113] If the API supports long-running operations, they SHOULD be asynchronous. The following approach
SHOULD be followed:

(@) The service consumer activates the service operation.

(b) The service operation returns the status code “202 Accepted” according to IETF RFC 7231 (section 6.3.3),
i.e., the request has been accepted for processing but the processing has not been completed. The location of the
gueued task that was created is also returned with the HTTP header Location.

(c) The service consumer calls the returned Location to learn if the resource is available. If the resource is not
available, the response SHOULD have the status code “200 OK”, contain the task status (for example pending)
and MAY contain other information (for example, a link to cancel or delete the task using the DELETE HTTP
method). If the resource is available, the response SHOULD have the status code “303 See Other” and the
HTTP header Location SHOULD contain the URL to retrieve the task results.

6.14. Security Model

General Rules

81. Within the scope of this standard, API security is concerned with pivotal security attributes that will ensure that
information accessible by an API and APIs themselves are secure throughout their lifecycle. These attributes are
confidentiality, integrity, availability, trust, non-repudiation, compartmentalization, authentication, authorization and auditing.

[RSG-114] Confidentiality: APIs and API Information MUST be identified, classified, and protected against
unauthorized access, disclosure and eavesdropping at all times. The least privilege, need to know and need to
share® principles MUST be followed.

[RSG-115] Integrity-Assurance: APIs and API Information MUST be protected against unauthorized modification,
duplication, corruption and destruction. Information MUST be modified through approved transactions and
interfaces. Systems MUST be updated using approved configuration management, change management and patch
management processes.

[RSG-116] Availability: APIs and API Information MUST be available to authorized users at the right time as defined
in the Service Level Agreements (SLAs), access-control policies and defined business processes.

[RSG-117] Non-repudiation: Every transaction processed or action performed by APIs MUST enforce non-
repudiation through the implementation of proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

[RSG-118] Authentication, Authorization, Auditing: Users, systems, APIs or devices involved in critical transactions
or actions MUST be authenticated, authorized using role-based or attribute based access-control services and
maintain segregation of duty. In addition, all actions MUST be logged and the authentication’s strength must
increase with the associated information risk.

Guidelines for secure and threat-resistant APl management
82. APIs should be designed, built, tested, and implemented with security requirements and risks in mind. The

appropriate countermeasures and controls should be built directly into the design and not as an after-thought. It is
recommended to use best practices and standards, such as OWASP.

[RSG-119] While developing APIs, threats, malicious use cases, secure coding techniques, transport layer security
and security testing MUST be carefully considered, especially:

— PUTs and POSTs - i.e.,: which change to internal data could potentially be used to attack or misinform.

— DELETES -i.e.,: could be used to remove the contents of an internal resource repository

—  Whitelist allowable methods- to ensure that allowable HTTP Methods are properly restricted while others
would return a proper response code.

—  Well known attacks should be considered during the threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and mitigation defined within OWASP Top Ten Cheat
Sheet!® MUST be taken into consideration.

[RSG-120] While developing APIs, the standards and best practices listed below SHOULD be followed:
Secure coding best practices: OWASP Secure Coding Principles

— Rest API security: REST Security Cheat Sheet
— Escape inputs and cross site scripting protection: OWASP XSS Cheat Sheet

9 “Security by Design Principles.” OWASP, https://www.owasp.org/index.php/Security by Design_Principles
10 “Top 10-2017 Top 10.” OWASP, http://www.owasp.org/index.php/Top _10-2017 Top_10



https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Security_by_Design_Principles
http://www.owasp.org/index.php/Top_10-2017_Top_10

CWS/7/3
MpunoxeHue I, cTp. 21

—  SQL Injection prevention: OWASP SQL Injection Cheat Sheet, OWASP Parameterization Cheat Sheet
—  Transport layer security: OWASP Transport Layer Protection Cheat Sheet

[RSG-121] Security testing and vulnerability assessment MUST be carried out to ensure that APIs are secure and
threat-resistant. This requirement MAY be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and penetration testing.

Encryption, Integrity and non-repudiation

83. Protected services must be secured to protect authentication credentials in transit: for example passwords, API keys
or JSON Web Tokens. Integrity of the transmitted data and non-repudiation of action taken should also be guaranteed.
Secure cryptographic mechanisms can ensure confidentiality, encryption, integrity assurance and non-repudiation. Perfect
forward secrecy is one means of ensuring that session keys cannot be compromised.

[RSG-122] Protected services MUST only provide HTTPS endpoints. TLS 1.2, or higher, with a cipher suite that
includes ECDHE for key exchange.

[RSG-123] When considering authentication protocols, perfect forward secrecy SHOULD be used to provide
transport security. The use of insecure cryptographic algorithms and backwards compatibility to SSL 3 and TLS
1.0/1.1 SHOULD NOT be allowed.

[RSG-124] For maximum security and trust, a site-to-site IPSEC VPN SHOULD be established to further protect
the information transmitted over insecure networks.

[RSG-125] The consuming application SHOULD validate the TLS certificate chain when making requests to
protected resources, including checking the certificate revocation list.

[RSG-126] Protected services SHOULD only use valid certificates issued by a trusted certificate authority (CA).

[RSG-127] Tokens SHOULD be signed using secure signing algorithms that are compliant with the digital
signature standard (DSS) FIPS —186-4. The RSA digital signature algorithm or the ECDSA algorithm SHOULD be
considered.

Authentication and Authorization

83. Authorization is the act of performing access control on a resource. Authorization does not just cover the
enforcement of access controls, but also the definition of those controls. This includes the access rules and policies, which
should define the required level of access agreeable to both provider and consuming application. The foundation of access
control is a provider granting or denying a consuming application and/or consumer access to a resource to a certain level of
granularity. Coarse-grained access should be considered at the API or the API gateway request point while fine-grained
control should be considered at the backend service, if possible. Role Based Access Control (RBAC) or the Attribute Based
Access Control (ABAC) model can be considered.

84. If a service is protected, then Open ID Connect should be favored over OAuth 2.0 because it fills many of the gaps of
the latter and provides a standardized way to gain a resource owner's profile data, JSON Web Token (JWT) standardized
token format and cryptography. Other security schemes should not be used such as HTTP Basic Authorization which
requires that the client must keep a password somewhere in clear text to send along with each request. Also the verification
of this password would be slower because it will have to access the credential store. OAuth 2.0 does not specify the
security token. Therefore, the JWT token should be used in comparison for example to SAML 2.0, which is more verbose.

[RSG-128] Anonymous authentication MUST only be used when the customers and the application they are using
accesses information or feature with a low sensitivity level which should not require authentication, such as, public
information.

[RSG-129] Username and password or password hash authentication MUST NOT be allowed.
[RSG-130] If a service is protected, then Open ID Connect SHOULD be used.
[RSG-131] For use of JSON Web Tokens (JWT) consider the following:

— A JWT secret MUST possess high entropy to increase the work factor of a brute force attack.
— Token TTL and RTTL SHOULD be as short as possible.
—  Sensitive information SHOULD not be stored in the JIWT payload.

85. A common security design choice is to centralize user authentication. It should be stored in an Identity Provider
(IdP) or locally at REST endpoints.

86. Services should be careful to prevent leaking of credentials. Passwords, security tokens, and API keys should not
appear in the URL, as this can be captured in web server logs, which makes them intrinsically valuable. For example, the
following is incorrect (APl Key in URL): https://wipo. int/api/patents?apiKey=a53f435643de32.


https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWS/7/3
MpunoxeHue I, cTp. 22

[RSG-132] In POST/PUT requests, sensitive data SHOULD be transferred in the request body or by request
headers.

[RSG-133] In GET requests, sensitive data SHOULD be transferred in an HTTP Header.

[RSG-134] In order to minimize latency and reduce coupling between protected services, the access control
decision SHOULD be taken locally by REST endpoints.

87. API Keys Authentication: API keys should be used wherever system-to-system authentication is required API keys
should be automatically and randomly generated. The inherent risk of this authentication mode is that anyone with a copy of
the API key can use it as though they were the legitimate consuming application. Hence, all communications should be over
TLS, to protect the key in transit. The onus is on the application developer to properly protect their copy of the API key. If
the API key is embedded into the consuming application, it can be decompiled and extracted. If stored in plain text files,
they can be stolen and re-used for malicious purposes. An API Key must therefore be protected by a credential store or a
secret management mechanism. API Keys may be used to control services usage even for public services.

Certificate mutual authentication should be used when a Web API requires stronger authentication than offered by API keys
and therefore overhead of public key cryptography and certificate are warranted. Secure and trusted certificates must be
issued by a mutually trusted certificate authority (CA) through a trust establishment process or cross-certification.

[RSG-135] API Keys SHOULD be used for protected and public services to prevent overwhelming their service
provider with multiple requests (denial-of-service attacks). For protected services APl Keys MAY be used for
monetization (purchased plans), usage policy enforcement (QoS) and monitoring.

[RSG-136] API Keys MAY be combined with the HTTP request header user-agent to discern between a human user
and a software agent as specified in IETF RFC 7231.

[RSG-137] The service provider SHOULD return along with HTTP response headers the current usage status. The
following response data MAY be returned:

— rate limit - rate limit (per minute) as set in the system;

— rate limit remaining - remaining amount of requests allowed during the current time slot (-1 indicates that the
limit has been exceeded);

— rate limit reset - time (in seconds) remaining until the request counter will be reset.

[RSG-138] The service provider SHOULD return the status code “429 Too Many Requests” if requests are
coming in too quickly.

[RSG-139] API Keys MUST be revoked if the client violates the usage agreement.

[RSG-140] API Keys SHOULD be transferred using custom HTTP headers. They SHOULD NOT be transferred
using query parameters.

[RSG-141] API Keys SHOULD be randomly generated.

To mitigate identity security risks peculiar to sensitive systems and privileged actions, strong authentication can be
leveraged. Certificates shared between the client and the server should be used, for example X.509.

[RSG-142] For highly privileged services, two-way mutual authentication between the client and the server SHOULD
use certificates to provide additional protection.

[RSG-143] Multi-factor authentication SHOULD be implemented to mitigate identity risks for application with a high-
risk profile, a system processing very sensitive information or a privileged action.

Availability and threat protection

88. Availability in this context covers threat protection to minimize API downtime, looking at how threats against exposed
APls can be mitigated using basic design principles. Availability also covers scaling to meet demand and ensuring the
hosting environments are stable etc. These levels of availability are addressed across the hardware and software stacks
that support the delivery of APIs. Availability is normally addressed under business continuity and disaster recovery
standards that recommend a risk assessment approach to define the availability requirements.

Cross-domain Requests

89. Certain "cross-domain" requests, notably Ajax requests, are forbidden by default by the same-origin security policy.
Under the same-origin policy, a web browser permits scripts contained in a first web page to access data in a second web
page, only if both web pages have the same origin (i.e., combination of URI scheme, host hame, and port number).

90. The Cross-Origin Resource Sharing (CORS) is a W3C standard to flexibly specify which Cross-Domain Requests
are permitted. By delivering appropriate CORS HTTP headers, your REST API signals to the browser which domains or
origins are allowed to make JavaScript calls to the REST service.



CWS/7/3
MpunoxeHue I, cTp. 23

91. The JSON with padding (JSONP) is a method for sending JSON data without worrying about cross-domain request
issues. It introduces callback functions for the loading of JSON data from different domains. The idea behind it is based on
the fact that the HTML <script> tag is not affected by the same origin policy. Anything imported through this tag is
executed immediately in the global context. Instead of passing in a JavaScript file, one can pass in a URL to a service that
returns JavaScript code.

92. The following approaches are usually followed to bypass this restriction:

— JSONP is a workaround for cross-domain requests. It does not offer any error-detection mechanism, i.e., if
there was an issue and the service failed or responded with an HTTP error, there is no way to determine what
the issue was on the client side. The result will be that the AJAX application will just ‘hang’. Moreover, the
site that uses JSONP will unconditionally trust the JSON provided from a different domain.

— Iframe is an alternative workaround for cross-domain requests. Using the JavaScript window.postMessage
(message, targetOrigin) method on the iframe object, it is possible to pass a request a site of a
different domain. Iframe approach has good compatibility even in old browsers. Moreover, it only supports
GET. The source of the Iframes page should be always be checked due to security issues.

— CORS is a standardized approach to perform a call to an external domain. It can use XMLHttpRequest to
send and receive data and has better error handling mechanism than JSONP. It supports many types of
authorization in comparison to JSONP, which only supports cookies. It also supports HTTP Methods in
comparison to JSONP, which only supports GET. On the other hand, it is not always possible to implement
CORS because the browsers have to support it and because the APl consumers have to be enlisted in the
CORS whitelist.

[RSG-144] If the REST APl is public then the HTTP header Access-Control-Allow-0Origin MUST be set to *'.

[RSG-145] If the REST API is protected then CORS SHOULD be used, if possible. Else, JSONP MAY be used as
fallback but only for GET requests, for example, when the user is accessing using an old browser. Iframe SHOULD
NOT be used.

6.15. API Maturity Model

93. It is common to classify a REST API using a maturity model. While various models are available, this Standard
refers to the Richardson Maturity Model (RMM). RMM defines three levels and this Standard recommends Level 2 for REST
API because Level 3 is complex to implement and requires significant conceptual and development-related investment from
service providers and consumers. At the same time, it does not immediately benefit service consumers.

94. If a Web APl implements Level 3 of RMM, a hypermedia format must be put in place. Hypertext Application
Language (HAL)!! is simple and is compatible with JSON and XML responses. However it is only a draft recommendation,
along with other hypermedia formats , such as JSON-LD?*2. JSON-Schema?? should be used because as although there is
currently no specification for Level 3 of RMM, this is considered the most mature. The following hypermedia formats should
not be considered: IETF RFC 5988 and Collection+JSON.,

95. It is recommended that instances described by a schema provide a link to a downloadable JSON Schema using the link
relation "describedby”, as defined by Linked Data Protocol 1.0, section 8.1 [W3C.REC-Idp-20150226]*4.

In HTTP, such links can be attached to any response using the Link header [RFC8288]. An example of such a header
would be:

Link: <http://example.com/my-hyper-schema#>; rel="describedby"

[RSJ-146] If using instances described a schema, the Link header SHOULD be used to provide a link to a
downloadable JSON schema ACCORDING TO RFC8288.

[RSJ-147] AWeb API MUST implement at least Level 2 (Transport Native Properties) of RMM. Level 3
(Hypermedia) MAY be implemented to make the API completely discoverable.

11 “JSON Hypertext Application Language.” IETF Tools, https://tools.ietf.org/html/draft-kelly-json-hal-08

12 JSON-LD 1.0, https://www.w3.org/TR/json-Id/

13 “Specification.” JSON Schema, https://json-schema.org/specification.html#specification-documents

14 “Apstract.” JSON Schema: A Media Type for Describing JSON Documents, https://json-schema.org/latest/json-schema-
core.html#hypermedia



https://tools.ietf.org/html/draft-kelly-json-hal-08
http://www.w3.org/TR/json-ld/
https://json-schema.org/specification.html#specification-documents
https://json-schema.org/latest/json-schema-core.html#hypermedia
https://json-schema.org/latest/json-schema-core.html#hypermedia

CWS/7/3
MpunoxeHue |, cTp. 24

96. A custom hypermedia format may be designed. In which case, a set of attributes is recommended. For example:

{
"link": {
"href'": "/patents",
“"rel": "self"
3.
b3

[RSJ-148] For designing a custom hypermedia format the following set of attributes SHOULD be used enclosed into an
attribute link:

—  href —the target URI

— rel —the meaning of the target URI

— self —the URI references the resource itself

— next -the URI references the previous page (if used during pagination)
— previous — the URI references the next page (if used during pagination)
— arbitrary name v denotes the custom meaning of a relation.

7. SOAP WEB API

97. A SOAP Web API is a software application identified by URI, whose interfaces and binding are capable of being
defined, described, and discovered by XML artifacts. It also supports direct interactions with other software applications
using XML-based messages via internet protocols such as SOAP and HTTP.

98. A SOAP-based contract is described in a Web Service Definition Language (WSDL), a W3C standard document.
Throughout this document “Web Service Contract WSDL document” will be referred as just “WSDL".

99. When creating web services, there are two development styles: Contract Last and Contract First. When using a
contract-last approach, you start with the code, and let the web service contract be generated from that. When using
contract-first, you start with the WSDL contract, and use code to implement said contract.

7.1. General Rules

100. The Web Service Interoperability (WS-I) Profile is one of the most important standards in regards to SOAP-based
APIs, and it provides a minimum foundation for writing Web Services that can work together. WS-I provides a guideline on
how services are “exposed” to each other and how they transfer information (referred to as ‘messaging’). Itis a profile for
implementing specific versions of some of the most important Web Service standards such as WSDL, SOAP, XML, etc.
Adhering to certain profiles implicitly indicates adhering to specific versions of these Web Services standards. WS-I Basic
Profile v1.1 provides guidance for using XML 1.0, HTTP 1.1, UDDI, SOAP 1.1, WSDL 1.1, and UDDI 2.0. WS-I Basic Profile
2.0 provides guidance for using SOAP 1.2, WSDL 1.1, UDDI 2.0, WS-Addressing, and MTOM. SOAP 1.2 provides a clear
processing model and leads to better interoperability. WSDL 2.0 was designed to solve the interoperability issues found in
WSDL 1.1 by using improved SOAP 1.2 bindings.

[WS-01] All WSDLs MUST conform to WS-I Basic Profile 2.0. WSDL 1.2 MAY be used.

101. A WSDL SOAP binding can be either a Remote Procedure Call (RPC) style binding or a document-style binding. A
SOAP binding can also have an encoded use or a literal use. This gives you five style/luse models: RPC/encoded,
RPClliteral, document/encoded, document/literal, document/literal wrapped.

[WS-02] Services MUST follow document-style binding and literal use models (either document/literal or
document/literal wrapped). When there are graphs, then the RPC/encoded style MUST be used.

[WS-03] When there are exceptional use cases, such as when there are overloaded operations in the WSDL, then
all the other styles SHOULD be used.

102. The concrete WSDL should be separated from the abstract WSDL in order to provide a more modular and flexible
interface. The abstract WSDL defines data types, messages, operation, and the port type. The concrete WSDL defines the
binding, port and service.

[WS-04] The WSDL SHOULD be separated into an abstract and a concrete part.

[WS-05] All data types SHOULD be defined in an XSD file and imported in the abstract WSDL.

[WS-06] The concrete WSDL MUST define only one service with one port.



CWS/7/3
MpunoxeHue I, cTp. 25

7.2. Schemas

103. Schemas used in the WSDL must be compliant with WIPO Standard ST.96 Standard. For re-use purposes and
modularity, a schema must be a separate document that is either included or imported into the WSDL, instead of defining
directly it in the WSDL. This will permit changes in XML structure without changing the WSDL.

[WS-07] The schema defined in the wsdl : types element MUST be imported from a self-standing schema file, to
allow modularity and re-use.

[WS-08] Import of an external schema MUST be implemented using an xsd: import technique, not an
xsd:include.

[WS-09] Element xsd:any MUST NOT be used to specify a root element in the message body.

[WS-10] The target namespace for the WSDL (attribute targetNamespace on wsdl :definitions) MUST be
different from the target namespace of the schema (attribute targetNamespace on xsd:schema).

[WS-11] The requests and responses (naming convention, message format, data structure, and data dictionary)
SHOULD follow WIPO Standard ST.96.

7.3. Naming and Versioning

104. Appropriate naming conventions should also be applied when naming Services and WSDL elements. Naming
conventions should follow those implemented in WIPO Standard ST.96.

[WS-12] Services MUST be named in UpperCamelCase and have a 'Service' suffix, for example
https://wipo.int/PatentsService.

[WS-13] WSDL elements message, part, portType, operation, input, output, and binding SHOULD be named in
UpperCamelCase.

[WS-14] Request message names SHOULD have a ‘Request’ suffix.
[WS-15] Response message names SHOULD have a ‘Response” suffix.

[WS-16] Operation names SHOULD follow the format of <Verb><Object>{<Qualifier>}, where <Verb>
indicates the operation (preferably Get, Create, Update, or Delete where applicable) on the <Object> of the
operation, optionally finally followed by a <Qualifier> of the <Object>.

105. All operation names will have at least two parts. An optional third part may be included to further clarify and/or
specify the business purpose of the operation. The three parts are: <Verb> <Object> <Qualifier - Optional>.
Each part will be described in detail below.

Verb — Each operation name will start with a verb. The verb examples in common usage are described below:

Verb Description Example
Get Get a single object GetBibData
Create Get a new object CreateBibData
Update Update an object UpdateBibData
Delete Delete an object DeleteCustomer

Object — A noun following a verb will be a succinct and unambiguous description of the business function the
operation is providing. The goal is to provide consumers with a better understanding of what the operation does
with no ambiguity. Given that the definition of some entities are not common across the various cost centers, the
object may be a composite field with the first node being the cost center and the second node the entity, for
example, PatentCustomer.

Qualifier — The purpose of the object qualifier (optional) attribute is, to further clarify the business domain or
subject area, for example, GetCustomerList. Get denotes the operation to be acted upon the Customer and
List further describes the fact that the intention is to get a list of Customers not just one customer as in
GetCustomer.

106. According to the service-oriented design principles, service providers and consumers should evolve independently.
The service consumer should not be affected from minor (backward compatible) changes by the service provider.
Therefore, service versioning should use only major version numbers. For internal APIs (for example, for development and
testing) minor versions may also be used such as Semantic Versioning.



CWS/7/3
MpunoxeHue I, cTp. 26

[WS-17] The name of the WSDL file SHOULD conform the following pattern: <service name>_V<major
version number>

[WS-18] The namespace of the WSDL file SHOULD contain the service version; for
example https://wipo. int/PatentsService/V1”

107. The description of service and its operations is provided as WSDL documentation.

[WS-19] Element wsdl : documentation SHOULD be used in WSDL with description of service (as the first child
of wsdl :definitions in the WSDL) and its operations.

7.4. Web Service Contract Design

108. A Web Service Contract should include a technical interface comprised of a Web Service Definition Language
(WSDL), XML Schema definitions, WS-Policy descriptions as well as a non-technical interface comprised of one or more
service description documents.

109. The WSDL, part of the “Service Contract,” must be designed prior to any code development. No WSDL should ever
be auto-generated from the code. The motto is “Contract First” and NOT “Code First”. All Web Service Contracts must
conform to Web Service Interoperability Basic Profile (WS-I BP). Any project that auto-generates from code will be liable to
amendments to ensure conformance to these standards.

7.5. Attaching Policies to WSDL Definitions

110. Web Service Contracts can be extended with security policies that express additional constraints, requirements, and
qualities that typically relate to the behaviors of services. Security policies can be human-readable and become part of a
supplemental service-level agreement, or can be machine-readable processed at runtime. Machine-readable policies are
defined using the WS-Policy language and related WS-Policy specifications.

[WS-20] Policy expressions MUST be isolated into a separate WS-Policy definition document, which is then
referenced within the WSDL document via the wsp:PolicyReference element.

[WS-21] Global or domain-specific policies SHOULD be isolated and applied to multiple services.

[WS-22] Policy attachment points SHOULD conform the WSDL 1.1 or later version, preferably version 2.0,
attachment point elements and corresponding policy subjects (service, endpoint, operation, and message).

7.6. SOAP — Web Service Security

111. Web Services Security (WSS): SOAP Message Security is a set of enhancements to SOAP messaging that provides
message integrity and confidentiality. WSS: SOAP Message Security is extensible, and can accommodate a variety of
security models and encryption technologies. WSS: SOAP Message Security provides three main mechanisms that can be
used independently or together:

—  The ability to send security tokens as part of a message, and for associating the security tokens with message
content

—  The ability to protect the contents of a message from unauthorized and undetected modification (message
integrity)

—  The ability to protect the contents of a message from unauthorized disclosure (message confidentiality)

WSS: SOAP Message Security can be used in conjunction with other Web service extensions and application-specific
protocols to satisfy a variety of security requirements.

[WS-23] Web Services using SOAP message SHOULD be protected accordance with WSS:SOAP Standard
recommendations.

8. DATA TYPE FORMATS

112.  This Standard recommends primitive data type formats such as time, date and language to be consistent with the
recommendation of WIPO Standard ST.96 which are used both for XML and JSON requests and responses and for query
parameters.

[CS-01] Time objects SHOULD be formatted as specified in IETF RFC 3339 (it is a profile of ISO 8601).
[CS-02] Time zone information SHOULD be used as specified in IETF RFC 3339. For example: 20:54:21+00:00

[CS-03] Date objects SHOULD be formatted as specified in IETF RFC 3339 (it is a profile of ISO 8601). For
example: 2018-10-19

[CS-04] Datetime (i.e., timestamp) objects SHOULD be formatted as specified in IETF RFC 3339 (it is a profile of
ISO 8601).



CWS/7/3
MpunoxeHwue I, cTp. 27

[CS-05] The relevant time zone SHOULD be used as specified in IETF RFC 3339. For example: 2017-02-
14T20:54:21+00:00

[CS-06] ISO 4217-Alpha (3-Letter Currency Codes) SHOULD be used for Currency Codes. The precision of the
value (i.e., number of digits after the decimal point) MAY vary depending on the business requirements.

[CS-07] WIPO Standard ST.3 two-letter codes SHOULD be used for representing IPOs, states, other entities,
organizations and for priority and designated countries/organizations.

[CS-08] ISO 3166-1-Alpha-2 Code Elements (2 letter country codes) SHOULD be used for the representation of the
names of countries, dependencies, and other areas of particular geopolitical interest, on the basis of lists of country
names obtained from the United Nations.

[CS-09] ISO 639-1 (2-Letter Language Codes) SHOULD be used for Language Codes.

[CS-10] Units of Measure SHOULD use the units of measure as described in The Unified Code for Units of Measure
(based on 1SO 80000 definitions). For example, for weight measuring using kilograms (kg)

[CSJ-11] Characters used in enumeration values MUST be restricted to the following set: {a-z, A-Z, 0-9, period (.),
comma (,), spaces (), dash (-) and underscore ().

[CSJ-12] The Representation Terms in Annex VIII SHOULD be used for atomic property names.

[CSJ-13] Acronyms and abbreviations appearing at the beginning of a property name SHOULD be in lower case.
Otherwise all values of an enumeration, acronyms and abbreviation values MUST appear in upper case.

9. CONFORMANCE

113. This Standard is designed as a set of design rules and conventions that can be layered on top of existing or new
Web Service APIs to provide common functionality. Not all services will support all of the conventions defined in the
standard due to business (for example, QoS may not be required) or technical constraints (for example, OAuth 2.0 may
already be used).

114. This standard defines two broad levels of conformance: A and AA Conformance Levels. Note that rules indicates as
‘MAY’ are not considered important when determining conformance with the standard.

115. The Web Service APIs are encouraged to support as much additional functionality beyond their level of conformance
as is appropriate for their intended scenario.

116. Two broad conformance levels are defined:

— Level A: For Level A conformance, the API indicates that the required general design rules (RSG), which are
identified as ‘MUST in this standard, are followed. In addition, the rules specific to the type of response
returned must also be complied with, In other words, the following conformance sub-level are indicated:

0 Level AJ: returning a JSON response, must comply with all general level rules (RSG) identified
as MUST as well as all JSON specific rules (RSJ) identified as MUST.

0 Level AX: returning an ST.96 XML instance, must comply with all general level rules (RSG)
identified as MUST as well as all XML specific rules (RSX) identified as MUST.

— Level AA: For Level AA conformance, the API indicates that is Level A compliant and all the recommended
design rules, which are identified as ‘SHOULD’ in this standard, are followed. As with Level A, there are sub-
levels dependent upon the type of response:

0 Level AAJ: Level AJ compliance as well as the recommended SHOULD rules applicable to a
JSON response.

0 Level AAX: Level AX compliance as well as the recommended SHOULD rules applicable to an
XML response.

117. The traceability matric between the design rules and the conformance levels is listed in Annex I.

10. REFERENCES

WIPO Standards

WIPO ST.3 — “Two-letter codes for the representation of states, other entities and organizations”
WIPO ST.96 — “Processing of Industrial Property information using XML”"



CWS/7/3
MpunoxeHwue I, cTp. 28

Standards and Conventions

— |EFT RFC 2119: Key words for use in RFCs to Indicate Requirement Levels — www.ietf.org/rfc/rfc2119.txt

— |EFT RFC 3339: Date and Time on the Internet: Timestamps — www.ietf.org/rfc/rfc3339.txt

— |EFT RFC 3986: Uniform Resource Identifier (URI): Generic Syntax — www.ietf.org/rfc/rfc3986.txt

— |EFT RFC 5789: PATCH Method for HTTP — https://tools.ietf.org/rfc/rfc5789.txt

— |EFT RFC 5988: Web Linking — https://tools.ietf.org/rfc/rfc5988.txt

— |EFT RFC 6648: Deprecating the "X-" Prefix and Similar Constructs in Application Protocols
— https://tools.ietf.org/rfc/rfc6648.txt

— |EFT RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage
— https://tools.ietf.org/rfc/rfc6750.txt

— |EFT RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
— www.ietf.org/rfc/rfc7231.txt

— |EFT RFC 7232: Hypertext Transfer Protocol (HTTP/1.1) — Conditional Requests www.ietf.org/rfc/rfc7232.txt

— |EFT RFC 7234: Hypertext Transfer Protocol (HTTP/1.1) — Caching www.ietf.org/rfc/rfc7234.txt

— |EFT RFC 7386: JSON Merge Patch — www.ietf.org/rfc/rfc7386.txt.

— IEFT RFC 7240: Prefer Header for HTTP — https://tools.ietf.org/rfc/rfc7240.txt

— IEFT RFC 7519: JSON Web Token — www.ietf.org/rfc/rfc7519.txt

— |EFT RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2) — https://tools.ietf.org/html/rfc7540

— |EFT BCP-47: Tags for Identifying Languages — https://tools.ietf.org/rfc/bcp/bcp4d7.txt.

— IS0 639-1: Language codes — https://en.wikipedia.org/wiki/List_of ISO_639-1_codes

— IS0 3166-1 alpha-2: Two-letter acronyms for country codes — https://en.wikipedia.org/wiki/ISO_3166-1_alpha-
2

— IS0 3166-1 alpha-3: Three-letter acronyms for country codes — https://en.wikipedia.org/wiki/ISO_3166-
1_alpha-3

— IS0 4217: Currency Codes — www.iso.org/iso/home/standards/currency_codes.htm

— IS0 8601: Date and Time Formats — https://en.wikipedia.org/wiki/ISO_8601

—  OData - https://www.odata.org/

—  OASIS OData Metadata Service Entity Model — http://docs.oasis-
open.org/odata/odata/v4.0/os/models/MetadataService.edmx.

— OASIS OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte. Latest
version — http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html.

— OASIS OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl. Latest
version — http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html.

— OASIS OData "OData Version 4.0 Part 1: Protocol- http://docs.oasis-open.org/odata/odata/v4.0/os/partl-
protocol/odata-v4.0-0s-part1-protocol.html.

— OASIS OData Version 4.0 Part 2: URL Conventions — http://docs.oasis-open.org/odata/odata/v4.0/os/part2-
url-conventions/odata-v4.0-os-part2-url-conventions.html.

— OASIS OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) — http://docs.oasis-
open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html.

—  OASIS ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test
Cases — http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/

—  OASIS Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and OData
Capabilities Vocabulary — http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

— OASIS XML schemas: OData EDMX XML Schema and OData EDM XML Schema-— http://docs.oasis-
open.org/odata/odata/v4.0/os/schemas/

— OASIS SAML 2.0 — http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

— RAML (ReSTful API Modeling Language) — http://raml.org

—  OpenAPI Initiative — www.openapis.org

— Richardson’s REST API Maturity Model — https://martinfowler.com/articles/richardsonMaturityModel.html

—  HAL - http://stateless.co/hal_specification.html

—  JSON-LD - https://json-Id.org

—  Collection+JSON - Document Format — http://amundsen.com/media-types/collection/format/

—  BadgerFish — http://badgerfish.ning.com/

—  Semantic Versioning — https://semver.org/

—  REST - https://lwww.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

—  CQL - https://en.wikipedia.org/wiki/Contextual_Query_Language

—  Z39.50 — https://www.loc.gov/z3950/agency/Z39-50-2003.pdf

— WS- Basic Profile 2.0 — http://ws-i.org/profiles/basicprofile-2.0-2010-11-09.html

— WB3C SOAP 1.2 Part 1: Messaging Framework — https://www.w3.org/TR/soap12-partl/

— WB3C SOAP 1.2 Part 2: Adjuncts — https://www.w3.0org/TR/soap12-part2/

— W3C WSDL Version 2.0 Part 1: Core Language — https://www.w3.org/TR/wsdI20/

— WB3C CORS - https://www.w3.org/TR/cors/

—  WB3C Matric Parameters — https://www.w3.org/Designlssues/MatrixURIs.html


http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc3986.txt
https://tools.ietf.org/rfc/rfc5789.txt
https://tools.ietf.org/rfc/rfc5988.txt
https://tools.ietf.org/rfc/rfc6648.txt
https://tools.ietf.org/rfc/rfc6750.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7234.txt
http://www.ietf.org/rfc/rfc7386.txt
https://tools.ietf.org/rfc/rfc7240.txt
http://www.ietf.org/rfc/rfc7519.txt
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/rfc/bcp/bcp47.txt
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://www.iso.org/iso/home/standards/currency_codes.htm
https://en.wikipedia.org/wiki/ISO_8601
http://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://raml.org/
http://www.openapis.org/
https://martinfowler.com/articles/richardsonMaturityModel.html
http://stateless.co/hal_specification.html
https://json-ld.org/
http://amundsen.com/media-types/collection/format/
http://badgerfish.ning.com/
https://semver.org/
https://www.ics.uci.edu/%7Efielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Contextual_Query_Language
https://www.loc.gov/z3950/agency/Z39-50-2003.pdf
http://ws-i.org/profiles/basicprofile-2.0-2010-11-09.html
https://www.w3.org/TR/soap12-part1/
https://www.w3.org/TR/soap12-part2/
https://www.w3.org/TR/wsdl20/
https://www.w3.org/TR/cors/
https://www.w3.org/DesignIssues/MatrixURIs.html

CWS/7/3
MpunoxeHwue I, cTp. 29

IP Offices’ REST APIs

EPO - Open Patent Services OPS v 3.2 https://developers.epo.org

USPTO - PatentsView http://www.patentsview.org/api/doc.html

WIPO - ePCTv1.1 https://pct.wipo.int/

EUIPO — TMview, Designview, TMclass http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-
Search.xml

Industry REST APIs and Design Guidelines

Others

Facebook — https://developers.facebook.com/docs/graph-api/reference

GitHub — https://developer.github.com/v3

Google APIs Design Guide — https://cloud.google.com/apis/design/

Azure — https://docs.microsoft.com/en-us/rest/api/

OpenAPI — https://swagger.io/docs/specification/about/

OData — http://www.odata.org/documentation/

JSON API — http://jsonapi.org/format/

Microsoft API Design — https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
JIRA REST API — https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples
Confluece REST API — https://developer.atlassian.com/server/confluence/

Ebay API — https://developer.ebay.com/api-docs/static/ebay-rest-landing.html

Oracle REST Data Services — http://www.oracle.com/technetwork/developer-tools/rest-data-
services/overview/index.html

PayPal REST API — https://developer.paypal.com/docs/api/overview/

Data on the Web Best Practices — https://www.w3.org/TR/dwbp/#intro

SAP Guidelines for Future REST API Harmonization

— https://d.dam.sap.com/m/xAUymP/54014_GB_54014_enUS.pdf

GitHub API — https://developer.github.com/v3/

Zalando — https://github.com/zalando/ReSTful-api-guidelines

Dropbox — https://www.dropbox.com/developers

Twitter — https://developer.twitter.com/en/docs

CQRS - https://martinfowler.com/bliki/ CQRS.html

ITU — https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx

OWASP Rest Security Cheat Sheet — https://www.owasp.org/index.php/REST_Security _Cheat_Sheet
DDD - https://martinfowler.com/bliki/BoundedContext.html

REST Principles — https://en.wikipedia.org/wiki/Representational_state_transfer

Open/Closed Principle — https://en.wikipedia.org/wiki/Open/closed_principle

Which style of WSDL should | use? — https://www.ibm.com/developerworks/library/ws-whichwsdl/
https://www.ict.govt.nz/guidance-and-resources/standards-compliance/api-standard-and-guidelines/
http://www.sabsa.org/node/69

https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Security_by Design_Principles
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://nvipubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

SOA Principles of Service Design, Thomas Erl (2008)

[Annexes follow]


https://developers.epo.org/
http://www.patentsview.org/api/doc.html
https://pct.wipo.int/
http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-Search.xml
http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-Search.xml
https://developers.facebook.com/docs/graph-api/reference
https://developer.github.com/v3
https://cloud.google.com/apis/design/
https://docs.microsoft.com/en-us/rest/api/
https://swagger.io/docs/specification/about/
http://www.odata.org/documentation/
http://jsonapi.org/format/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples/#getting-metadata-for-creating-issues-examples
https://developer.atlassian.com/server/confluence/
https://developer.ebay.com/api-docs/static/ebay-rest-landing.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
https://developer.paypal.com/docs/api/overview/
https://www.w3.org/TR/dwbp/#intro
https://d.dam.sap.com/m/xAUymP/54014_GB_54014_enUS.pdf
https://developer.github.com/v3/
https://github.com/zalando/restful-api-guidelines
https://www.dropbox.com/developers
https://developer.twitter.com/en/docs
https://martinfowler.com/bliki/CQRS.html
https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Open/closed_principle
https://www.ibm.com/developerworks/library/ws-whichwsdl/
https://www.ict.govt.nz/guidance-and-resources/standards-compliance/api-standard-and-guidelines/
http://www.sabsa.org/node/69
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Security_by_Design_Principles
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

ANNEX | - LIST OF RESTFUL WEB SERVICE DESIGN RULES AND CONVENTIONS

CWS/7/3
MpunoxeHue I, ctp. 30

The following tables summarize service design rules and conventions, and identifies basic conformance requirements in
terms of which conformance level, Web Services APl implementation support. In addition to the Rule ID and the Rule
description, a cross reference is provided which indicates the other conformance levels that this rule is applicable to.

The following is a guide to the tables below:

— Table 1 provides a summary of rules that must be complied with in order to achieve a Level AJ compliance (for a
JSON response);
— Table 2 provides a summary of design rules that must be complied with in order to achieve a Level AX compliance
(for an XML response) ;
—  Table 3 provides a summary of design rules that must be complied with in order to achieve a Level AAJ
compliance (for a JSON response); and
— Table 4 provides s summary of design rules that must be complied with in order to achieve a Level AAX
compliance (for an XML response).

[Note: Tables 1 to 4 remain incomplete until this new approach is approved by the CWS

table.]

Table 1: Conformance Table JSON response (Level AJ)

. An example is provided in each

Rule ID Rule description Cross reference

[RSG-01] The forward slash character “/” MUST be used in the path of the URI to
indicate a hierarchical relationship between resources but the path
MUST NOT end with a forward slash as it does not provide any AX, AAJ, AAX
semantic value and may cause confusion.

[RSG-02] Resources name MUST be consistent in their naming pattern.

[RSG-04 Query parameters MUST be consistent in their naming pattern

[RSG-06] The URL pattern for a Web APl MUST contain the word “api” in the URI.

[RSG-07] Matrix parameters MUST NOT be used.

[RSG-08] A Web API MUST consistently apply HTTP status codes as described in
IETF RFCs

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.

[RSG-12] If the API detects valid values that require features to not be
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or
otherwise a sub-resource.

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve
nested resources.

[RSG-19] Resource names, segment and query parameters MUST be composed

of words in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.




CWS/7/3
MpunoxeHue I, cTp. 31

Rule ID Rule description Cross reference

[RSG-21] A Web APl MUST support content type negotiation following IETF RFC
7231.

[RSG-22] JSON format MUST be assumed when no specific content type is
requested.

[RSG-28] A Web API MUST support at least XML or JSON.

[RSG-29] HTTP Methods MUST be restricted to the HTTP standard methods
POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specified in IETF RFC 7231 and 5789.

[RSG-34] For an end point which fetches a single resource, if a resource is not
found, the method GET MUST return the status code “404 Not Found”.
Endpoints which return lists of resources will simply return an empty list.

[RSG-35] If a resource is retrieved successfully, the GET method MUST return
200 OK.

[RSG-38] A HEAD request MUST be idempotent.

[RSG-40] A POST request MUST NOT be idempotent according to the IETF
RFC 2616.

[RSG-44] A PUT request MUST be idempotent.

[RSG-45] If a resource is not found, PUT MUST return the status code “404 Not
Found”.

[RSG-46] If a resource is updated successfully, PUT MUST return the status code
“200 OK” if the updated resource is returned or a “204 No Content” if it is
not returned.

[RSG-47] A PATCH request MUST NOT be idempotent.

[RSG-49] If a resource is not found PATCH MUST return the status code “404 Not
Found”.

[RSJ-50] If a Web API implements partial updates using PATCH, it MUST use the
JSON Merge Patch format to describe the partial change set, as
described in IETF RFC 7386 (by using the content type
application/merge-patch+json.

[RSG-51] A DELETE request MUST NOT be idempotent.

[RSG-52] If a resource is not found, DELETE MUST return the status code “404
Not Found”.

[RSG-53] If a resource is deleted successfully, DELETE MUST return the status
“200 OK” if the deleted resource is returned or “204 No Content” if it is
not returned.

[RSG-54] The final recipient is either the origin server or the first proxy or gateway

to receive a Max-Forwards value of zero in the request. A TRACE
request MUST NOT include a body.




CWS/7/3
MpunoxeHue I, ctp. 32

Rule ID Rule description Cross reference

[RSG-55] A TRACE request MUST NOT be idempotent.

[RSG-56] The value of the Via HTTP header field MUST act to track the request
chain.

[RSG-57] The Max-Forwards HTTP header field MUST be used to allow the client
to limit the length of the request chain.

[RSG-59] Responses to TRACE MUST NOT be cached.

[RSG-61] An OPTIONS request MUST be idempotent.

[RSG-70] A Web API MUST use query parameters to implement pagination.

[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination.

[RSG-74] A Web API MUST support sorting.

[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter
MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
‘" character. The default direction MUST be specified by the server in
case that a sort direction is not specified for a key.

[RSG-76] A Web API SHOULD return the sorting criteria in the response.

[RSG-78] A Web API MUST support returning the number of items in a collection.

[RSG-79] A query parameter MUST be used to support returning the number of
items in a collection.

[RSG-81] A Web API MAY support returning the number of items in a collection
inline, i.e., as the part of the response that contains the collection itself.
A query parameter MUST be used.

[RSG-85] A Service Contract MUST specify the grammar supported (such as
fields, functions, keywords, and operators).

[RSG-86] The query parameter “q” MUST be used.

[RSG-87] On the protocol level, a Web APl MUST return an appropriate HTTP
status code selected from the list of standard HTTP Status Codes.

[RSJ-88] On the application level, a Web APl MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, morelnfo, and internalMessage attributes are optional.

[RSG-89] Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

[RSG-90] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST

NOT be used to carry error messages.




CWS/7/3
MpunoxeHue I, cTp. 33

Rule ID

Rule description

Cross reference

[RSG-92]

A Service Contract format MUST include the following:

— APl version;

— Information about the semantics of API elements;
— Resources;

—  Resource attributes;

—  Query Parameters;

—  Methods;

—  Media types;

—  Search grammar (if one is supported);
—  HTTP Status Codes;

—  HTTP Methods;

— Restrictions and distinctive features;
—  Security (if any).

[RSG-94]

A REST API MUST provide API documentation as a Service Contract.

[RSG-95]

A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified in the Service Contract, it MUST be assumed that this
Standard is followed.

[RSG-96]

A Service Contract MUST allow API client skeleton code generation.

[RSG-103]

A Web API MUST support caching of GET results; a Web APl MAY
support caching of results from other HTTP Methods.

[RSG-111]

If a Web API supports preference handling, the nomenclature of
preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

[RSG-112]

If a Web API supports localized data, the request HTTP header Accept-
Language MUST be supported to indicate the set of natural languages
that are preferred in the response as specified in IETF RFC 7231.

[RSG-114]

Confidentiality: APIs and API Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, need to know and need
to share®® principles MUST be followed.

[RSG-115]

Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modification, duplication, corruption and
destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using
approved configuration management, change management and patch
management processes.

[RSG-116]

Availability: APIs and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

[RSG-117]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

[RSG-118]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services




CWS/7/3
MpunoxeHue |, ctp. 34

Rule ID

Rule description

Cross reference

and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase with the
associated information risk.

[RSG-119]

While developing APIs, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTs and POSTs —i.e.,: which change to internal data
could potentially be used to attack or misinform.

— DELETES -i.e.,: could be used to remove the contents of
an internal resource repository

—  Whitelist allowable methods- to ensure that allowable
HTTP Methods are properly restricted while others would
return a proper response code.

—  Well known attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined within OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

[RSG-120]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

[RSG-121]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

[RSG-122]

Protected services MUST only provide HTTPS endpoints. TLS 1.2, or
higher, with a cipher suite that includes ECDHE for key exchange.

[RSG-128]

Anonymous authentication MUST only be used when the customers and
the application they are using accesses information or feature with a low
sensitivity level which should not require authentication, such as, public
information.

[RSG-129]

Username and password or password hash authentication MUST NOT
be allowed.

[RSG-139]

APl Keys MUST be revoked if the client violates the usage agreement.

[RSG-144]

If the REST APl is public then the HTTP header Access-Control-Allow-
Origin MUST be set to .

[RSJ-147]

A Web API MUST implement at least Level 2 (Transport Native
Properties) of RMM. Level 3 (Hypermedia) MAY be implemented to
make the API completely discoverable.

Table 2: Conformance Table XML response (Level AX)

Rule ID Rule description Cross reference
[RSG-01] The forward slash character “/” MUST be used in the path of the URI to
indicate a hierarchical relationship between resources but the path
MUST NOT end with a forward slash as it does not provide any AJ, AAJ, AAX
semantic value and may cause confusion.
[RSG-02] Resources name MUST be consistent in their naming pattern.



https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

CWS/7/3
MpunoxeHwue I, cTp. 35

Rule ID Rule description Cross reference
[RSG-04 Query parameters MUST be consistent in their naming pattern
[RSG-06] The URL pattern for a Web API MUST contain the word “api” in the URI.
[RSG-07] Matrix parameters MUST NOT be used.

[RSG-08] A Web API MUST consistently apply HTTP status codes as described in
IETF RFCs

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.

[RSG-12] If the API detects valid values that require features to not be
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or
otherwise a sub-resource.

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve
nested resources.

[RSG-19] Resource names, segment and query parameters MUST be composed
of words in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.

[RSG-21] A Web APl MUST support content type negotiation following IETF RFC
7231.

[RSG-22] JSON format MUST be assumed when no specific content type is
requested.

[RSG-28] A Web API MUST support at least XML or JSON.

[RSG-29] HTTP Methods MUST be restricted to the HTTP standard methods
POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specified in IETF RFC 7231 and 5789.

[RSG-34] For an end point which fetches a single resource, if a resource is not
found, the method GET MUST return the status code “404 Not Found”.
Endpoints which return lists of resources will simply return an empty list.

[RSG-35] If a resource is retrieved successfully, the GET method MUST return
200 OK.

[RSG-38] A HEAD request MUST be idempotent.

[RSG-40] A POST request MUST NOT be idempotent according to the IETF
RFC 2616.

[RSG-44] A PUT request MUST be idempotent.

[RSG-45] If a resource is not found, PUT MUST return the status code “404 Not

Found”.




CWS/7/3
MpwunoxeHue I, cTp. 36

Rule ID Rule description Cross reference

[RSG-46] If a resource is updated successfully, PUT MUST return the status code
“200 OK” if the updated resource is returned or a “204 No Content” if it is
not returned.

[RSG-47] A PATCH request MUST NOT be idempotent.

[RSG-49] If a resource is not found PATCH MUST return the status code “404 Not
Found”.

[RSG-51] A DELETE request MUST NOT be idempotent.

[RSG-52] If a resource is not found, DELETE MUST return the status code “404
Not Found”.

[RSG-53] If a resource is deleted successfully, DELETE MUST return the status
“200 OK” if the deleted resource is returned or “204 No Content” if it is
not returned.

[RSG-54] The final recipient is either the origin server or the first proxy or gateway
to receive a Max-Forwards value of zero in the request. A TRACE
request MUST NOT include a body.

[RSG-55] A TRACE request MUST NOT be idempotent.

[RSG-56] The value of the Via HTTP header field MUST act to track the request
chain.

[RSG-57] The Max-Forwards HTTP header field MUST be used to allow the client
to limit the length of the request chain.

[RSG-59] Responses to TRACE MUST NOT be cached.

[RSG-61] An OPTIONS request MUST be idempotent.

[RSG-70] A Web API MUST use query parameters to implement pagination.

[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination.

[RSG-74] A Web API MUST support sorting.

[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter
MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
‘" character. The default direction MUST be specified by the server in
case that a sort direction is not specified for a key.

[RSG-76] A Web API SHOULD return the sorting criteria in the response.

[RSG-78] A Web API MUST support returning the number of items in a collection.

[RSG-79] A query parameter MUST be used to support returning the number of

items in a collection.




CWS/7/3
MpwunoxeHwue I, ctp. 37

Rule ID

Rule description

Cross reference

[RSG-81]

A Web API MAY support returning the number of items in a collection
inline, i.e., as the part of the response that contains the collection itself.
A query parameter MUST be used.

[RSG-85]

A Service Contract MUST specify the grammar supported (such as
fields, functions, keywords, and operators).

[RSG-86]

The query parameter “q” MUST be used.

[RSG-87]

On the protocol level, a Web APl MUST return an appropriate HTTP
status code selected from the list of standard HTTP Status Codes.

[RSJ-88]

On the application level, a Web APl MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, morelnfo, and internalMessage attributes are optional.

[RSG-89]

Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

[RSG-90]

The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be used to carry error messages.

[RSG-92]

A Service Contract format MUST include the following:

— APl version;

— Information about the semantics of API elements;
— Resources;

— Resource attributes;

—  Query Parameters;

—  Methods;

—  Media types;

—  Search grammar (if one is supported);
—  HTTP Status Codes;

—  HTTP Methods;

— Restrictions and distinctive features;
—  Security (if any).

[RSG-94]

A REST API MUST provide API documentation as a Service Contract.

[RSG-95]

A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified in the Service Contract, it MUST be assumed that this

Standard is followed.

[RSG-96]

A Service Contract MUST allow API client skeleton code generation.

[RSG-103]

A Web API MUST support caching of GET results; a Web APl MAY
support caching of results from other HTTP Methods.

[RSG-111]

If a Web API supports preference handling, the nomenclature of

preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

[RSG-112]

If a Web API supports localized data, the request HTTP header Accept-

Language MUST be supported to indicate the set of natural languages
that are preferred in the response as specified in IETF RFC 7231.




CWS/7/3
MpunoxeHue I, cTp. 38

Rule ID

Rule description

Cross reference

[RSG-114]

Confidentiality: APIs and API Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, need to know and need
to share principles MUST be followed.

[RSG-115]

Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modification, duplication, corruption and
destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using
approved configuration management, change management and patch
management processes.

[RSG-116]

Availability: APIs and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

[RSG-117]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

[RSG-118]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase with the
associated information risk.

[RSG-119]

While developing APIs, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTs and POSTs —i.e.,: which change to internal data
could potentially be used to attack or misinform.

— DELETES —i.e.,: could be used to remove the contents of
an internal resource repository

—  Whitelist allowable methods- to ensure that allowable
HTTP Methods are properly restricted while others would
return a proper response code.

—  Well known attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined within OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

[RSG-120]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

[RSG-121]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

[RSG-122]

Protected services MUST only provide HTTPS endpoints. TLS 1.2, or
higher, with a cipher suite that includes ECDHE for key exchange.

[RSG-128]

Anonymous authentication MUST only be used when the customers and
the application they are using accesses information or feature with a low
sensitivity level which should not require authentication, such as, public
information.



https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

CWS/7/3
MpwunoxeHwue I, cTp. 39

Rule ID Rule description Cross reference
[RSG-129] | Username and password or password hash authentication MUST NOT
be allowed.
[RSG-139] | API Keys MUST be revoked if the client violates the usage agreement.
[RSG-144] | If the REST API is public then the HTTP header Access-Control-Allow-
Origin MUST be set to .
[RSJ-147] A Web API MUST implement at least Level 2 (Transport Native

Properties) of RMM. Level 3 (Hypermedia) MAY be implemented to
make the API completely discoverable.

Table 3: Conformance Table Level AAJ (JSON Response)

Rule ID Rule description Cross reference

[RSG-01] The forward slash character “/” MUST be used in the path of the URI to
indicate a hierarchical relationship between resources but the path
MUST NOT end with a forward slash as it does not provide any AJ, AX, AAX
semantic value and may cause confusion.

[RSG-02] Resources name MUST be consistent in their naming pattern.

[RSG-03] Resource names SHOULD use lowercase or kebab-case naming
conventions. Resources name MAY be abbreviated.

[RSG-05] Query parameters SHOULD use the lowerCamelCase convention.
Query parameter MAY be abbreviated.

[RSG-06] The URL pattern for a Web APl MUST contain the word “api” in the URI.

[RSG-07] Matrix parameters MUST NOT be used.

[RSG-08] A Web API MUST consistently apply HTTP status codes as described in
IETF RFCs

[RSG-09] The recommended codes in Annex VI SHOULD be used by a Web API
to classify the error.

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.

[RSG-11] If the API detects syntactically correct argument names (in the request
or query parameters) that are not expected, it SHOULD ignore them.

[RSG-12] If the API detects valid values that require features to not be
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.

[RSG-13] A Web API SHOULD only use top-level resources. If there are sub-
resources, they should be collections and imply an association. An
entity should be accessible as either top-level resource or sub-resource
but not using both ways.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or
otherwise a sub-resource.

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve

nested resources.




CWS/7/3
MpunoxeHue I, cTp. 40

Rule ID

Rule description

Cross reference

[RSG-16]

A query parameter SHOULD be used instead of URL paths in case that
a Web API supports projection following the format: “fields="<comma-
separated list of attribute names>.

[RSG-17]

Resource names SHOULD be nouns for CRUD Web APIs and verbs for
Intent Web APIs.

[RSG-18]

If resource name is a noun it SHOULD always use the plural form.
Irregular noun forms SHOULD NOT be used. For example, /persons
should be used instead of /people.

[RSG-19]

Resource names, segment and query parameters MUST be composed
of words in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.

[RSG-20]

A Web API SHOULD use for content type negotiation the request HTTP
header Accept and the response HTTP header Content-Type.

[RSG-21]

A Web API MUST support content type negotiation following IETF RFC
7231.

[RSG-22]

JSON format MUST be assumed when no specific content type is
requested.

[RSG-23]

A Web API SHOULD return the status code “406 Not Acceptable” if a
requested format is not supported.

[RSG-24]

A Web API SHOULD reject requests containing unexpected or missing
content type headers with the HTTP status code “406 Not Acceptable”
or “415 Unsupported Media Type”.

[RSJ-26]

JSON object property names SHOULD be provided in lowerCamelCase,
e.g., applicantName.

[RSG-28]

A Web API MUST support at least XML or JSON.

[RSG-29]

HTTP Methods MUST be restricted to the HTTP standard methods
POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specified in IETF RFC 7231 and 5789.

[RSG-31]

Some proxies support only POST and GET methods. To overcome
these limitations, a Web APl MAY use a POST method with a custom
HTTP header “tunneling” the real HTTP method. The custom HTTP
header X-HTTP-Method SHOULD be used.

[RSG-32]

If a HTTP Method is not supported, the HTTP status code “405 Method
Not Allowed” SHOULD be returned.

[RSG-33]

A Web API SHOULD support batching operations (aka bulk operations)
in place of multiple individual requests to achieve latency reduction. The
same semantics should be used for HTTP Methods and HTTP status
codes. The response payload SHOULD contain information about all
batching operations. If multiple errors occur, the error payload SHOULD
contain information about all the occurrences (in the details attribute).

All bulk operations SHOULD be executed in an atomic operation.

[RSG-34]

For an end point which fetches a single resource, if a resource is not
found, the method GET MUST return the status code “404 Not Found”.
Endpoints which return lists of resources will simply return an empty list.

[RSG-35]

If a resource is retrieved successfully, the GET method MUST return
200 OK.




CWS/7/3
MpunoxeHue I, cTp. 41

Rule ID Rule description Cross reference

[RSG-37] When the URI length exceeds the 255 bytes, then the POST method
SHOULD be used instead of GET due to GET limitations, or else create
named queries if possible.

[RSG-38] A HEAD request MUST be idempotent.

[RSG-39] Some proxies support only POST and GET methods. A Web
API SHOULD support a custom HTTP request header to override the
HTTP Method in order to overcome these limitations.

[RSG-40] A POST request MUST NOT be idempotent according to the IETF
RFC 2616.

[RSG-41] If the resource creation was successful, the HTTP header Location
SHOULD contain a URI (absolute or relative) pointing to a created
resource.

[RSG-42] If the resource creation was successful, the response SHOULD contain
the status code “201 Created”.

[RSG-43] If the resource creation was successful, the response payload SHOULD
by default contain the body of the created resource, to allow the client to
use it without making an additional HTTP call.

[RSG-44] A PUT request MUST be idempotent.

[RSG-45] If a resource is not found, PUT MUST return the status code “404 Not
Found”.

[RSG-46] If a resource is updated successfully, PUT MUST return the status code
“200 OK” if the updated resource is returned or a “204 No Content” if it is
not returned.

[RSG-47] A PATCH request MUST NOT be idempotent.

[RSG-48] If a Web APl implements partial updates, idempotent characteristics of
PATCH SHOULD be taken into account. In order to make it idempotent
the APl MAY follow the IETF RFC 5789 suggestion of using optimistic
locking.

[RSG-49] If a resource is not found PATCH MUST return the status code “404 Not
Found”.

[RSJ-50] If a Web APl implements partial updates using PATCH, it MUST use the
JSON Merge Patch format to describe the partial change set, as
described in IETF RFC 7386 (by using the content type
application/merge-patch+json.

[RSG-51] A DELETE request MUST NOT be idempotent.

[RSG-52] If a resource is not found, DELETE MUST return the status code “404
Not Found”.

[RSG-53] If a resource is deleted successfully, DELETE MUST return the status
“200 OK” if the deleted resource is returned or “204 No Content” if it is
not returned.

[RSG-54] The final recipient is either the origin server or the first proxy or gateway
to receive a Max-Forwards value of zero in the request. A TRACE
request MUST NOT include a body.

[RSG-55] A TRACE request MUST NOT be idempotent.




CWS/7/3
MpunoxeHue I, cTp. 42

Rule ID Rule description Cross reference

[RSG-56] The value of the Via HTTP header field MUST act to track the request
chain.

[RSG-57] The Max-Forwards HTTP header field MUST be used to allow the client
to limit the length of the request chain.

[RSG-58] If the request is valid, the response SHOULD contain the entire request
message in the response body, with a Content-Type of "message/http".

[RSG-59] Responses to TRACE MUST NOT be cached.

[RSG-60] The status code “200 OK” SHOULD be returned to TRACE.

[RSG-61] An OPTIONS request MUST be idempotent.

[RSG-62] Custom HTTP headers starting with the “X-" prefix SHOULD NOT be
used.

[RSG-63] Custom HTTP headers SHOULD NOT be used to change the behavior
of HTTP Methods unless it is to resolve any existing technical limitations
(for example, see [RSG-39]).

[RSG-64] The naming convention for custom HTTP headers is <organization>-
<header name>, where <organization> and <header> SHOULD follow
the kebab-case convention.

[RSG-65] A Web API SHOULD support service versioning. URI versioning
SHOULD be used for service versioning such as /v<version number>
(for example /api/vl/inventors). Header Versioning, Query string
versioning and Media type versioning SHOULD NOT be used.

[RSG-66] A versioning-numbering scheme SHOULD be followed considering only
the major version number (for example /v1).

[RSG-68] A Web API SHOULD support pagination.

[RSG-70] A Web API MUST use query parameters to implement pagination.

[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination.

[RSG-72] Query parameters limit=<number of items to deliver> and
offset=<number of items to skip> SHOULD be used, where limit is the
number of items to be returned (page size), and skip the number of
items to be skipped (offset). If no page size limit is specified, a default
SHOULD be defined - global or per collection; the default offset MUST
be zero “0”. For example, the following is a valid URL:
https://wipo.int/api/v1l/patents?limit=10&offset=20

[RSG-73] The limit and the offset parameter values SHOULD be included in the
response.

[RSG-74] A Web API MUST support sorting.

[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter

MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
‘" character. The default direction MUST be specified by the server in
case that a sort direction is not specified for a key.

[RSG-76]

A Web API SHOULD return the sorting criteria in the response.




CWS/7/3
MpunoxeHue I, cTp. 43

Rule ID Rule description Cross reference

[RSG-77] A Web API MAY support expanding the body of returned content. The
query parameter expand=<comma-separated list of attributes names>
SHOULD be used.

[RSG-78] A Web API MUST support returning the number of items in a collection.

[RSG-79] A query parameter MUST be used to support returning the number of
items in a collection.

[RSG-80] The query parameter count SHOULD be used to return the number of
items in a collection.

[RSG-81] A Web API MAY support returning the number of items in a collection
inline, i.e., as the part of the response that contains the collection itself.
A query parameter MUST be used.

[RSG-82] The query parameter count=true SHOULD be used. If not specified,
count should be set by default to false.

[RSG-83] If a Web API supports pagination, it SHOULD support returning inline in
the response the number of the collection (i.e., the total number of items
of the collection).

[RSG-84] When a Web API supports complex search expressions then a query
language SHOULD be specified, such as CQL.

[RSG-85] A Service Contract MUST specify the grammar supported (such as
fields, functions, keywords, and operators).

[RSG-86] The query parameter “q” MUST be used.

[RSG-87] On the protocol level, a Web APl MUST return an appropriate HTTP
status code selected from the list of standard HTTP Status Codes.

[RSJ-88] On the application level, a Web API MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, morelnfo, and internalMessage attributes are optional.

[RSG-89] Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

[RSG-90] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be used to carry error messages.

[RSG-91] Every logged error SHOULD have a unique Correlation ID. A custom

HTTP header SHOULD be used.




CWS/7/3
MpunoxeHue |, cTp. 44

Rule ID

Rule description

Cross reference

[RSG-92]

A Service Contract format MUST include the following:

— APl version;

— Information about the semantics of API elements;
— Resources;

— Resource attributes;

—  Query Parameters;

—  Methods;

— Media types;

—  Search grammar (if one is supported);
— HTTP Status Codes;

—  HTTP Methods;

— Restrictions and distinctive features;
—  Security (if any).

[RSG-93]

A Service Contract format SHOULD include the following:

— Schemas validating the requests and responses (for example,
XSD and JSON Schema);

— Examples of the API usage should be provided in all the
supported formats (for example, XML and JSON).

[RSG-94]

A REST API MUST provide API documentation as a Service Contract.

[RSG-95]

A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified in the Service Contract, it MUST be assumed that this
Standard is followed.

[RSG-96]

A Service Contract MUST allow API client skeleton code generation.

[RSG-97]

A Service Contract SHOULD allow server skeleton code generation.

[RSG-98]

A Web API documentation SHOULD be written in RAML or OAS.
Custom documentation formats SHOULD NOT be used.

[RSG-99]

A Web API SHOULD support conditionally retrieving data, to ensure
only data which is modified will be retrieved. Content-based Resource
Validation SHOULD be used because it is more accurate.

[RSG-100]

In order to implement Content-based Resource Validation the ETag
HTTP header SHOULD be used in the response to encode the data
state. Afterward, this value SHOULD be used in subsequent requests in
the conditional HTTP headers (such as If-Match or If-None-Match). If
the data has not been modified since the request returned the ETag, the
server SHOULD return the status code “304 Not Modified” (if not
modified). This mechanism is specified in IETF RFC 7231 and 7232.

[RSG-101]

In order to implement Time-based Resource Validation the Last-
Modified HTTP header SHOULD be used. This mechanism is specified
in IETF RFC 7231 and 7232.

[RSG-103]

A Web API MUST support caching of GET results; a Web APl MAY
support caching of results from other HTTP Methods.

[RSG-104]

The HTTP response headers Cache-Control and Expires SHOULD be
used. The latter MAY be used to support legacy clients.




CWS/7/3
MpunoxeHue I, cTp. 45

Rule ID

Rule description

Cross reference

[RSG-105]

A Web API SHOULD advertise if it supports partial file downloads by
responding to HEAD requests and replying with the HTTP response
headers Accept-Ranges and Content-Length.

[RSG-106]

A Web API SHOULD support partial file downloads. Multi-part ranges
SHOULD be supported.

[RSG-107]

A Web API SHOULD advertise if it supports partial file uploads.

[RSG-108]

A Web API SHOULD support partial file uploaded. Multi-part ranges
SHOULD be supported.

[RSG-109]

The service provider SHOULD return with HTTP response headers the
HTTP header “413 Request Entity Too Large” in case the request has
exceeded the maximum allowed limit. A custom HTTP header MAY be
used to indicate the maximum size of the request.

[RSG-110]

If a Web API supports preference handling, it SHOULD be implemented
according to IETF RFC 7240, i.e., the request HTTP header Prefer
SHOULD be used and the response HTTP header Preference-Applied
SHOULD be returned (echoing the original request).

[RSG-111]

If a Web API supports preference handling, the nomenclature of
preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

[RSG-112]

If a Web API supports localized data, the request HTTP header Accept-
Language MUST be supported to indicate the set of natural languages
that are preferred in the response as specified in IETF RFC 7231.

[RSG-113]

If the API supports long-running operations, they SHOULD be
asynchronous. The following approach SHOULD be followed:

The service consumer activates the service operation.

The service operation returns the status code “202 Accepted”
according to IETF RFC 7231 (section 6.3.3), i.e., the request
has been accepted for processing but the processing has not
been completed. The location of the queued task that was
created is also returned with the HTTP header Location.

The service consumer calls the returned Location to learn if the
resource is available. If the resource is not available, the
response SHOULD have the status code “200 OK”, contain the
task status (for example pending) and MAY contain other
information (for example, a link to cancel or delete the task using
the DELETE HTTP method). If the resource is available, the
response SHOULD have the status code “303 See Other” and
the HTTP header Location SHOULD contain the URL to retrieve
the task results.

[RSG-114]

Confidentiality: APIs and API Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, need to know and need
to share principles MUST be followed.

[RSG-115]

Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modification, duplication, corruption and
destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using
approved configuration management, change management and patch
management processes.




CWS/7/3
MpunoxeHue I, cTp. 46

Rule ID

Rule description

Cross reference

[RSG-116]

Availability: APIs and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

[RSG-117]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

[RSG-118]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase with the
associated information risk.

[RSG-119]

While developing APls, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTs and POSTs —i.e.,: which change to internal data
could potentially be used to attack or misinform.

— DELETES - i.e.,: could be used to remove the contents of
an internal resource repository

—  Whitelist allowable methods- to ensure that allowable
HTTP Methods are properly restricted while others would
return a proper response code.

—  Well known attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined within OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

[RSG-120]

While developing APls, the standards and best practices listed below
SHOULD be followed:

—  Secure coding best practices: OWASP Secure Coding
Principles

—  Rest API security: REST Security Cheat Sheet

— Escape inputs and cross site scripting protection:
OWASP XSS Cheat Sheet

—  SQL Injection prevention: OWASP SQL Injection Cheat
Sheet, OWASP Parameterization Cheat Sheet

Transport layer security: OWASP Transport Layer Protection Cheat
Sheet

[RSG-121]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

[RSG-122]

Protected services MUST only provide HTTPS endpoints. TLS 1.2, or
higher, with a cipher suite that includes ECDHE for key exchange.

[RSG-123]

When considering authentication protocols, perfect forward secrecy
SHOULD be used to provide transport security. The use of insecure
cryptographic algorithms and backwards compatibility to SSL 3 and TLS
1.0/1.1 SHOULD NOT be allowed.



https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWS/7/3
MpunoxeHwue I, cTp. 47

Rule ID

Rule description

Cross reference

[RSG-124]

For maximum security and trust, a site-to-site IPSEC VPN SHOULD be
established to further protect the information transmitted over insecure
networks.

[RSG-125]

The consuming application SHOULD validate the TLS certificate chain
when making requests to protected resources, including checking the
certificate revocation list.

[RSG-126]

Protected services SHOULD only use valid certificates issued by a
trusted certificate authority (CA).

[RSG-127]

Tokens SHOULD be signed using secure signing algorithms that are
compliant with the digital signature standard (DSS) FIPS —186-4. The
RSA digital signature algorithm or the ECDSA algorithm SHOULD be
considered.

[RSG-128]

Anonymous authentication MUST only be used when the customers and
the application they are using accesses information or feature with a low
sensitivity level which should not require authentication, such as, public
information.

[RSG-129]

Username and password or password hash authentication MUST NOT
be allowed.

[RSG-130]

If a service is protected, then Open ID Connect SHOULD be used.

[RSG-131]

For use of JSON Web Tokens (JWT) consider the following:

- A JWT secret MUST possess high entropy to increase the
work factor of a brute force attack.

—  Token TTL and RTTL SHOULD be as short as possible.

—  Sensitive information SHOULD not be stored in the IWT
payload.

— [RSG-130] In POST/PUT requests, sensitive data
SHOULD be transferred in the request body or by request
headers.

— [RSG-131] In GET requests, sensitive data SHOULD be
transferred in an HTTP Header.

—  [RSG-132] In order to minimize latency and reduce
coupling between protected services, the access control
decision SHOULD be taken locally by REST endpoints.

[RSG-132]

In POST/PUT requests, sensitive data SHOULD be transferred in the
request body or by request headers.

[RSG-133]

In GET requests, sensitive data SHOULD be transferred in an HTTP
Header.

[RSG-134]

In order to minimize latency and reduce coupling between
protected services, the access control decision SHOULD be taken
locally by REST endpoints.

[RSG-135]

API Keys SHOULD be used for protected and public services to prevent
overwhelming their service provider with multiple requests (denial-of-
service attacks). For protected services APl Keys MAY be used for
monetization (purchased plans), usage policy enforcement (QoS) and
monitoring.




CWS/7/3
MpunoxeHue I, cTp. 48

Rule ID

Rule description

Cross reference

[RSG-137]

The service provider SHOULD return along with HTTP response
headers the current usage status. The following response data MAY be
returned:

— rate limit - rate limit (per minute) as set in the system;

— rate limit remaining - remaining amount of requests
allowed during the current time slot (-1 indicates that the
limit has been exceeded);

— rate limit reset - time (in seconds) remaining until the
request counter will be reset.

[RSG-138]

The service provider SHOULD return the status code “429 Too Many
Requests” if requests are coming in too quickly.

[RSG-139]

APl Keys MUST be revoked if the client violates the usage agreement.

[RSG-140]

API Keys SHOULD be transferred using custom HTTP headers. They
SHOULD NOT be transferred using query parameters.

[RSG-141]

AP| Keys SHOULD be randomly generated.

[RSG-142]

For highly privileged services, two-way mutual authentication between
the client and the server SHOULD use certificates to provide additional
protection.

[RSG-143]

Multi-factor authentication SHOULD be implemented to mitigate identity
risks for application with a high-risk profile, a system processing very
sensitive information or a privileged action.

[RSG-144]

If the REST APl is public then the HTTP header Access-Control-Allow-
Origin MUST be set to .

[RSG-145]

If the REST APl is protected then CORS SHOULD be used, if possible.
Else, JSONP MAY be used as fallback but only for GET requests, for
example, when the user is accessing using an old browser. Iframe
SHOULD NOT be used.

[RSJ-146]

If using instances described a schema, the Link header SHOULD be
used to provide a link to a downloadable JSON schema ACCORDING
TO RFC8288.

[RSJ-147]

A Web API MUST implement at least Level 2 (Transport Native
Properties) of RMM. Level 3 (Hypermedia) MAY be implemented to
make the API completely discoverable.

[RSJ-148]

For designing a custom hypermedia format the following set of attributes
SHOULD be used enclosed into an attribute link:

—  href —the target URI

— rel —the meaning of the target URI

— self —the URI references the resource itself

— next -the URI references the previous page (if used
during pagination)

— previous - the URI references the next page (if used
during pagination)

—  arbitrary name v denotes the custom meaning of a
relation.




CWS/7/3

MpunoxeHwue I, cTp. 49

Table 4: Conformance Level AAX

Rule ID Rule description Cross reference

[RSG-01] The forward slash character “/” MUST be used in the path of the URI to indicate a
hierarchical relationship between resources but the path MUST NOT end with a
forward slash as it does not provide any semantic value and may cause confusion. AJ, AX, AAJ

[RSG-02] Resources name MUST be consistent in their naming pattern.

[RSG-03] Resource names SHOULD use lowercase or kebab-case naming conventions.
Resources name MAY be abbreviated.

[RSG-05] Query parameters SHOULD use the lowerCamelCase convention. Query
parameter MAY be abbreviated.

[RSG-06] The URL pattern for a Web API MUST contain the word “api” in the URI.

[RSG-07] Matrix parameters MUST NOT be used.

[RSG-08] A Web API MUST consistently apply HTTP status codes as described in IETF RFCs

[RSG-09] The recommended codes in Annex VI SHOULD be used by a Web API to classify
the error.

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status code “400
Bad Request”. The error payload MUST indicate the erroneous value.

[RSG-11] If the API detects syntactically correct argument names (in the request or query
parameters) that are not expected, it SHOULD ignore them.

[RSG-12] If the API detects valid values that require features to not be implemented, it MUST
return the HTTP status code “501 Not Implemented”. The error payload MUST
indicate the unhandled value.

[RSG-13] A Web API SHOULD only use top-level resources. If there are sub-resources, they
should be collections and imply an association. An entity should be accessible as
either top-level resource or sub-resource but not using both ways.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or otherwise a
sub-resource.

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve nested
resources.

[RSG-16] A query parameter SHOULD be used instead of URL paths in case that a Web API
supports projection following the format: “fields="<comma-separated list of attribute
names>.

[RSG-17] Resource names SHOULD be nouns for CRUD Web APIs and verbs for Intent Web
APIs.

[RSG-18] If resource name is a noun it SHOULD always use the plural form. Irregular noun
forms SHOULD NOT be used. For example, /persons should be used instead of
/people.

[RSG-19] Resource names, segment and query parameters MUST be composed of words in
the English language, using the primary English spellings provided in the Oxford
English Dictionary. Resource names that are localized due to business
requirements MAY be in other languages.

[RSG-20] A Web API SHOULD use for content type negotiation the request HTTP header
Accept and the response HTTP header Content-Type.

[RSG-21] A Web API MUST support content type negotiation following IETF RFC 7231.




CWS/7/3

MpunoxeHue I, cTp. 50

Rule ID Rule description Cross reference
[RSG-22] JSON format MUST be assumed when no specific content type is requested.
[RSG-23] A Web API SHOULD return the status code “406 Not Acceptable” if a requested

format is not supported.

[RSG-24] A Web API SHOULD reject requests containing unexpected or missing content type
headers with the HTTP status code “406 Not Acceptable” or “415 Unsupported
Media Type”.

[RSX-25] The requests and responses (naming convention, message format, data structure,
and data dictionary) SHOULD refer to WIPO Standard ST.96.

[RSX-27] XML components SHOULD be provided in UpperCamelCase in line with WIPO
Standard ST.96.

[RSG-28] A Web API MUST support at least XML or JSON.

[RSG-29] HTTP Methods MUST be restricted to the HTTP standard methods POST, GET,
PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as specified in IETF RFC
7231 and 5789.

[RSG-31] Some proxies support only POST and GET methods. To overcome these
limitations, a Web API MAY use a POST method with a custom HTTP header
“tunneling” the real HTTP method. The custom HTTP header X-HTTP-Method
SHOULD be used.

[RSG-32] If a HTTP Method is not supported, the HTTP status code “405 Method Not Allowed”
SHOULD be returned.

[RSG-33] A Web API SHOULD support batching operations (aka bulk operations) in place of
multiple individual requests to achieve latency reduction. The same semantics
should be used for HTTP Methods and HTTP status codes. The response payload
SHOULD contain information about all batching operations. If multiple errors occur,
the error payload SHOULD contain information about all the occurrences (in the
details attribute). All bulk operations SHOULD be executed in an atomic operation.

[RSG-34] For an end point which fetches a single resource, if a resource is not found, the
method GET MUST return the status code “404 Not Found”. Endpoints which return
lists of resources will simply return an empty list.

[RSG-35] If a resource is retrieved successfully, the GET method MUST return 200 OK.

[RSG-37] When the URI length exceeds the 255 bytes, then the POST method SHOULD be
used instead of GET due to GET limitations, or else create named queries if
possible.

[RSG-38] A HEAD request MUST be idempotent.

[RSG-39] Some proxies support only POST and GET methods. A Web APl SHOULD support
a custom HTTP request header to override the HTTP Method in order to overcome
these limitations.

[RSG-40] A POST request MUST NOT be idempotent according to the IETF RFC 2616.

[RSG-41] If the resource creation was successful, the HTTP header Location SHOULD
contain a URI (absolute or relative) pointing to a created resource.

[RSG-42] If the resource creation was successful, the response SHOULD contain the status
code “201 Created”.

[RSG-43] If the resource creation was successful, the response payload SHOULD by default

contain the body of the created resource, to allow the client to use it without making
an additional HTTP call.




CWS/7/3

MpunoxeHwue I, cTp. 51

Rule ID Rule description Cross reference

[RSG-44] A PUT request MUST be idempotent.

[RSG-45] If a resource is not found, PUT MUST return the status code “404 Not Found”.

[RSG-46] If a resource is updated successfully, PUT MUST return the status code “200 OK” if
the updated resource is returned or a “204 No Content” if it is not returned.

[RSG-47] A PATCH request MUST NOT be idempotent.

[RSG-48] If a Web APl implements partial updates, idempotent characteristics of PATCH
SHOULD be taken into account. In order to make it idempotent the APl MAY follow
the IETF RFC 5789 suggestion of using optimistic locking.

[RSG-49] If a resource is not found PATCH MUST return the status code “404 Not Found”.

[RSG-51] A DELETE request MUST NOT be idempotent.

[RSG-52] If a resource is not found, DELETE MUST return the status code “404 Not Found”.

[RSG-53] If a resource is deleted successfully, DELETE MUST return the status “200 OK” if
the deleted resource is returned or “204 No Content” if it is not returned.

[RSG-54] The final recipient is either the origin server or the first proxy or gateway to receive a
Max-Forwards value of zero in the request. A TRACE request MUST NOT include a
body.

[RSG-55] A TRACE request MUST NOT be idempotent.

[RSG-56] The value of the Via HTTP header field MUST act to track the request chain.

[RSG-57] The Max-Forwards HTTP header field MUST be used to allow the client to limit the
length of the request chain.

[RSG-58] If the request is valid, the response SHOULD contain the entire request message in
the response body, with a Content-Type of "message/http".

[RSG-59] Responses to TRACE MUST NOT be cached.

[RSG-60] The status code “200 OK” SHOULD be returned to TRACE.

[RSG-61] An OPTIONS request MUST be idempotent.

[RSG-62] Custom HTTP headers starting with the “X-" prefix SHOULD NOT be used.

[RSG-63] Custom HTTP headers SHOULD NOT be used to change the behavior of HTTP
Methods unless it is to resolve any existing technical limitations (for example, see
[RSG-39]).

[RSG-64] The naming convention for custom HTTP headers is <organization>-<header
name>, where <organization> and <header> SHOULD follow the kebab-case
convention.

[RSG-65] A Web API SHOULD support service versioning. URI versioning SHOULD be used

for service versioning such as /v<version nhumber> (for example /api/v1l/inventors).
Header Versioning, Query string versioning and Media type versioning SHOULD
NOT be used.




CWS/7/3

MpunoxeHue I, cTp. 52

Rule ID Rule description Cross reference

[RSG-66] A versioning-numbering scheme SHOULD be followed considering only the major
version number (for example /v1).

[RSG-68] A Web API SHOULD support pagination.

[RSG-70] A Web API MUST use query parameters to implement pagination.

[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination.

[RSG-72] Query parameters limit=<number of items to deliver> and offset=<number of items
to skip> SHOULD be used, where limit is the number of items to be returned (page
size), and skip the number of items to be skipped (offset). If no page size limit is
specified, a default SHOULD be defined - global or per collection; the default offset
MUST be zero “0". For example, the following is a valid URL:

https://wipo.int/api/v1l/patents?limit=10&offset=20

[RSG-73] The limit and the offset parameter values SHOULD be included in the response.

[RSG-74] A Web API MUST support sorting.

[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter MUST be
used. The value of this parameter is a comma-separated list of sort keys and sort
directions either ‘asc’ for ascending or ‘desc’ for descending MAY be appended to
each sort key, separated by the colon *:’ character. The default direction MUST be
specified by the server in case that a sort direction is not specified for a key.

[RSG-76] A Web API SHOULD return the sorting criteria in the response.

[RSG-77] A Web API MAY support expanding the body of returned content. The query
parameter expand=<comma-separated list of attributes names> SHOULD be used.

[RSG-78] A Web API MUST support returning the number of items in a collection.

[RSG-79] A query parameter MUST be used to support returning the number of items in a
collection.

[RSG-80] The query parameter count SHOULD be used to return the number of items in a
collection.

[RSG-81] A Web API MAY support returning the number of items in a collection inline, i.e., as
the part of the response that contains the collection itself. A query parameter MUST
be used.

[RSG-82] The query parameter count=true SHOULD be used. If not specified, count should
be set by default to false.

[RSG-83] If a Web API supports pagination, it SHOULD support returning inline in the
response the number of the collection (i.e., the total number of items of the
collection).

[RSG-84] When a Web API supports complex search expressions then a query language
SHOULD be specified, such as CQL.

[RSG-85] A Service Contract MUST specify the grammar supported (such as fields, functions,
keywords, and operators).

[RSG-86] The query parameter “q” MUST be used.

[RSG-87] On the protocol level, a Web API MUST return an appropriate HTTP status code

selected from the list of standard HTTP Status Codes.




CWS/7/3

MpunoxeHwue I, cTp. 53

Rule ID Rule description Cross reference

[RSJ-88] On the application level, a Web APl MUST return a payload reporting the error in
adequate granularity. The code and message attributes are mandatory, the details
attribute is conditionally mandatory and target, status, morelnfo, and
internalMessage attributes are optional.

[RSG-89] Errors MUST NOT expose security-critical data or internal technical details, such as
call stacks in the error messages.

[RSG-90] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST NOT be used to
carry error messages.

[RSG-92] A Service Contract format MUST include the following:

— APl version;

— Information about the semantics of API elements;
— Resources;

— Resource attributes;

—  Query Parameters;

—  Methods;

— Media types;

—  Search grammar (if one is supported);
— HTTP Status Codes;

—  HTTP Methods;

— Restrictions and distinctive features;
—  Security (if any).

[RSG-93] A Service Contract format SHOULD include the following:

— Schemas validating the requests and responses (for example, XSD and
JSON Schema);

—  Examples of the API usage should be provided in all the supported formats
(for example, XML and JSON).

[RSG-94] A REST API MUST provide API documentation as a Service Contract.

[RSG-95] A Web API implementation deviating from this Standard MUST be explicitly
documented in the Service Contract. If a deviating rule is not specified in the
Service Contract, it MUST be assumed that this Standard is followed.

[RSG-96] A Service Contract MUST allow API client skeleton code generation.

[RSG-97] A Service Contract SHOULD allow server skeleton code generation.

[RSG-98] A Web API documentation SHOULD be written in RAML or OAS. Custom
documentation formats SHOULD NOT be used.

[RSG-99] A Web API SHOULD support conditionally retrieving data, to ensure only data which
is modified will be retrieved. Content-based Resource Validation SHOULD be used
because it is more accurate.

[RSG-100] In order to implement Content-based Resource Validation the ETag HTTP header

SHOULD be used in the response to encode the data state. Afterward, this value
SHOULD be used in subsequent requests in the conditional HTTP headers (such as
If-Match or If-None-Match). If the data has not been modified since the request
returned the ETag, the server SHOULD return the status code “304 Not Modified” (if
not modified). This mechanism is specified in IETF RFC 7231 and 7232.




CWS/7/3

MpunoxeHue I, cTp. 54

Rule ID

Rule description

Cross reference

[RSG-101]

In order to implement Time-based Resource Validation the Last-Modified HTTP
header SHOULD be used. This mechanism is specified in IETF RFC 7231 and
7232.

[RSG-104]

The HTTP response headers Cache-Control and Expires SHOULD be used. The
latter MAY be used to support legacy clients.

[RSG-105]

A Web API SHOULD advertise if it supports partial file downloads by responding to
HEAD requests and replying with the HTTP response headers Accept-Ranges and
Content-Length.

[RSG-106]

A Web API SHOULD support partial file downloads. Multi-part ranges SHOULD be
supported.

[RSG-107]

A Web API SHOULD advertise if it supports partial file uploads.

[RSG-108]

A Web API SHOULD support partial file uploaded. Multi-part ranges SHOULD be
supported.

[RSG-109]

The service provider SHOULD return with HTTP response headers the HTTP
header “413 Request Entity Too Large” in case the request has exceeded the
maximum allowed limit. A custom HTTP header MAY be used to indicate the
maximum size of the request.

[RSG-110]

If a Web API supports preference handling, it SHOULD be implemented according
to IETF RFC 7240, i.e., the request HTTP header Prefer SHOULD be used and the
response HTTP header Preference-Applied SHOULD be returned (echoing the
original request).

[RSG-111]

If a Web API supports preference handling, the nomenclature of preferences that
MAY be set by using the Prefer header MUST be recorded in the Service Contract.

[RSG-112]

If a Web API supports localized data, the request HTTP header Accept-Language
MUST be supported to indicate the set of natural languages that are preferred in the
response as specified in IETF RFC 7231.

[RSG-113]

If the API supports long-running operations, they SHOULD be asynchronous. The
following approach SHOULD be followed:

The service consumer activates the service operation.

The service operation returns the status code “202 Accepted” according to
IETF RFC 7231 (section 6.3.3), i.e., the request has been accepted for
processing but the processing has not been completed. The location of the
queued task that was created is also returned with the HTTP header
Location.

The service consumer calls the returned Location to learn if the resource is
available. If the resource is not available, the response SHOULD have the
status code “200 OK”, contain the task status (for example pending) and
MAY contain other information (for example, a link to cancel or delete the
task using the DELETE HTTP method). If the resource is available, the
response SHOULD have the status code “303 See Other” and the HTTP
header Location SHOULD contain the URL to retrieve the task results.

[RSG-114]

Confidentiality: APIs and API Information MUST be identified, classified, and
protected against unauthorized access, disclosure and eavesdropping at all times.
The least privilege, need to know and need to share'® principles MUST be followed.

[RSG-115]

Integrity-Assurance: APIs and API Information MUST be protected against
unauthorized modification, duplication, corruption and destruction. Information
MUST be modified through approved transactions and interfaces. Systems MUST




CWS/7/3

MpunoxeHue I, cTp. 55

Rule ID

Rule description

Cross reference

be updated using approved configuration management, change management and
patch management processes.

[RSG-116]

Availability: APIs and API Information MUST be available to authorized users at the
right time as defined in the Service Level Agreements (SLAs), access-control
policies and defined business processes.

[RSG-117]

Non-repudiation: Every transaction processed or action performed by APIs MUST
enforce non-repudiation through the implementation of proper auditing,
authorization, authentication, and the implementation of secure paths and non-
repudiation services and mechanisms.

[RSG-118]

Authentication, Authorization, Auditing: Users, systems, APIs or devices involved in
critical transactions or actions MUST be authenticated, authorized using role-based
or attribute based access-control services and maintain segregation of duty. In
addition, all actions MUST be logged and the authentication’s strength must
increase with the associated information risk.

[RSG-119]

While developing APls, threats, malicious use cases, secure coding technigues,
transport layer security and security testing MUST be carefully considered,
especially:

— PUTs and POSTs - i.e.,: which change to internal data could
potentially be used to attack or misinform.

— DELETES - i.e.,: could be used to remove the contents of an internal
resource repository

—  Whitelist allowable methods- to ensure that allowable HTTP Methods
are properly restricted while others would return a proper response
code.

—  Well known attacks should be considered during the threat-modeling
phase of the design process to ensure that the threat risk does not
increase. The threats and mitigation defined within OWASP Top Ten
Cheat Sheet MUST be taken into consideration.

[RSG-120]

While developing APls, the standards and best practices listed below SHOULD be
followed:

—  Secure coding best practices: OWASP Secure Coding Principles

— Rest API security: REST Security Cheat Sheet

— Escape inputs and cross site scripting protection: OWASP XSS
Cheat Sheet

—  SQL Injection prevention: OWASP SQL Injection Cheat Sheet,
OWASP Parameterization Cheat Sheet

—  Transport layer security: OWASP Transport Layer Protection Cheat
Sheet

[RSG-121]

Security testing and vulnerability assessment MUST be carried out to ensure that
APIs are secure and threat-resistant. This requirement MAY be achieved by
leveraging Static and Dynamic Application Security Testing (SAST/DAST),
automated vulnerability management tools and penetration testing.

[RSG-122]

Protected services MUST only provide HTTPS endpoints. TLS 1.2, or higher, with a
cipher suite that includes ECDHE for key exchange.

[RSG-123]

When considering authentication protocols, perfect forward secrecy SHOULD be
used to provide transport security. The use of insecure cryptographic algorithms
and backwards compatibility to SSL 3 and TLS 1.0/1.1 SHOULD NOT be allowed.

[RSG-124]

For maximum security and trust, a site-to-site IPSEC VPN SHOULD be established
to further protect the information transmitted over insecure networks.

[RSG-125]

The consuming application SHOULD validate the TLS certificate chain when making
requests to protected resources, including checking the certificate revocation list.



https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWS/7/3

MpunoxeHue I, cTp. 56

Rule ID

Rule description

Cross reference

[RSG-126]

Protected services SHOULD only use valid certificates issued by a trusted certificate
authority (CA).

[RSG-127]

Tokens SHOULD be signed using secure signing algorithms that are compliant with
the digital signature standard (DSS) FIPS —186-4. The RSA digital signature
algorithm or the ECDSA algorithm SHOULD be considered.

[RSG-128]

Anonymous authentication MUST only be used when the customers and the
application they are using accesses information or feature with a low sensitivity level
which should not require authentication, such as, public information.

[RSG-129]

Username and password or password hash authentication MUST NOT be allowed.

[RSG-130]

If a service is protected, then Open ID Connect SHOULD be used.

[RSG-131]

For use of JSON Web Tokens (JWT) consider the following:

— A JWT secret MUST possess high entropy to increase the work factor
of a brute force attack.

— Token TTL and RTTL SHOULD be as short as possible.

—  Sensitive information SHOULD not be stored in the IWT payload.

— [RSG-130] In POST/PUT requests, sensitive data SHOULD be
transferred in the request body or by request headers.

— [RSG-131] In GET requests, sensitive data SHOULD be transferred in
an HTTP Header.

— [RSG-132] In order to minimize latency and reduce coupling between
protected services, the access control decision SHOULD be taken
locally by REST endpoints.

[RSG-132]

In POST/PUT requests, sensitive data SHOULD be transferred in the request body
or by request headers.

[RSG-133]

In GET requests, sensitive data SHOULD be transferred in an HTTP Header.

[RSG-134]

In order to minimize latency and reduce coupling between protected services, the
access control decision SHOULD be taken locally by REST endpoints.

[RSG-135]

API Keys SHOULD be used for protected and public services to prevent
overwhelming their service provider with multiple requests (denial-of-service
attacks). For protected services API Keys MAY be used for monetization
(purchased plans), usage policy enforcement (QoS) and monitoring.

[RSG-137]

The service provider SHOULD return along with HTTP response headers the
current usage status. The following response data MAY be returned:

— rate limit - rate limit (per minute) as set in the system;

—  rate limit remaining - remaining amount of requests allowed during the
current time slot (-1 indicates that the limit has been exceeded);

— rate limit reset - time (in seconds) remaining until the request counter
will be reset.

[RSG-138]

The service provider SHOULD return the status code “429 Too Many Requests” if
requests are coming in too quickly.

[RSG-139]

API Keys MUST be revoked if the client violates the usage agreement.

[RSG-140]

API Keys SHOULD be transferred using custom HTTP headers. They SHOULD
NOT be transferred using query parameters.




CWS/7/3

MpunoxeHwue I, cTp. 57

Rule ID Rule description Cross reference

[RSG-141] API Keys SHOULD be randomly generated.

[RSG-142] For highly privileged services, two-way mutual authentication between the client and
the server SHOULD use certificates to provide additional protection.

[RSG-143] Multi-factor authentication SHOULD be implemented to mitigate identity risks for
application with a high-risk profile, a system processing very sensitive information or
a privileged action.

[RSG-144] If the REST APl is public then the HTTP header Access-Control-Allow-Origin MUST
be set to .

[RSG-145] If the REST API is protected then CORS SHOULD be used, if possible. Else,
JSONP MAY be used as fallback but only for GET requests, for example, when the
user is accessing using an old browser. Iframe SHOULD NOT be used.

[RSJ-146] If using instances described a schema, the Link header SHOULD be used to provide
a link to a downloadable JSON schema ACCORDING TO RFC8288.

[RSJ-147] A Web API MUST implement at least Level 2 (Transport Native Properties) of RMM.
Level 3 (Hypermedia) MAY be implemented to make the API completely
discoverable.

[RSJ-148] For designing a custom hypermedia format the following set of attributes SHOULD

be used enclosed into an attribute link:

—  href —the target URI

—  rel —the meaning of the target URI

—  self — the URI references the resource itself

— next —the URI references the previous page (if used during
pagination)

—  previous — the URI references the next page (if used during
pagination)

— arbitrary name v denotes the custom meaning of a relation.

[Annex Il follows]



ANNEX Il - REST IP VOCABULARY

CWS/7/3

MpunoxeHue I, cTp. 58

The following IP Vocabulary is provided as an example for the RESTful Service Contracts. Particular IP Offices can extend it
according to business need. The purpose of providing this information is to inform IP Offices of the types of requests that
can be made when considering a HTTP GET or POST method.

Table 5: REST IP Vocabulary

Resource R N Parameter Data Description Design Rule
Name Type Type
/trademarks query string Returns the filed trademark identified by this
applicationNumber application, which can be provided using WIPO
ST.13 format.
text query string Returns a list of trademarks which contain this
word or series of words.
aoplicants query string Returns a list of trademarks which are owned
pp by the applicant/s identified by this the string.
/patents query string Returns those patent applications which were [CS-03]
filingDate filed at the IP Office on this particular date e.g.,
2019-07-06
query string Returns the filed patent application identified by
applicationNumber this application number, which can be provided
using WIPO ST.13 format.
inventors query string Returns the filed patent application/s which are
identified as being created by these inventors.
query string Returns a list of the filed patent applications
incs which are classified under this particular set of
P WIPO International Patent classifications e.g.,
A61M1/16.
/designs query string Returns the filed design application identified
applicationNumber by this application number, which can be using
WIPO ST.13 format.
query string Returns the design applications that were filed [CS-07]
filingOffice at the IP Office, identified by the WIPO ST.3
code.
The following technical query parameters defined in Table 6 should apply to all the REST API services:
Table 6: API technical parameters
Name Type Constraint Format/Example Description Design Rule
type/subtype; Used for content-type
format string parameter=value negotiation (prefer a [RSG-20]
HTTP request header)
v% where % is a positive Useq fo_r service
% string integer versioning (pre_fer [RSG-65]
indicating version as path
segment of the URL)
limit positive 1000 > limit>0 | limit=10 The page size used for [RSG-73]
integer pagination
offset positive Defaultis O offset=5 The_ offs_et used for [RSG-73]
integer pagination



https://www.wipo.int/export/sites/www/standards/en/pdf/03-13-01.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-13-01.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-13-01.pdf
https://www.wipo.int/classifications/ipc/en/
https://www.wipo.int/export/sites/www/standards/en/pdf/03-13-01.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-03-01.pdf

CWS/7/3

MpwunoxeHwue I, cTp. 59

Name Type Constraint Format/Example Description Design Rule
comma- Plrec,nc,)ns . sort=keyl:asc,key2:desc Multi-attribute sorting [RSG-74] -
sort separated list | ‘asc’/”desc” are criterion [RSG-76]
of attributes optional
comma- expand=keyl, key2 Used for expanding the
expand separated list body of the returned [RSG-77]
of attributes content
Default is false count=true Returns the number of
count boolean items in a collection (may | [RSG-80]
be inline)
apiKey=abcdef12345 Used to indicate a Web [RSG-132]
apikey string API Key (a HTTP header [RSG-133]
should be preferred)

ANNEX Il - LIST OF SOAP WEB API NAMES

The following service names are recommended for SOAP Service Contracts. The recommended response data type
according to the WIPO Standard ST.96 is also provided.

[Note: the table below includes some examples for further discussion and it will be completed with more examples in due
course.]

Table 7: Example SOAP resource names

Service Name Response Data Type Description

PatentsService PatentPublication.xsd SOAP web service to manage patents.

SOAP web service to manage trademark

TrademarkApplicationsService | TrademarkApplication.xsd oo
applications.

SOAP web service to manage industrial

DesignsService f
designs.

Design.xsd

ANNEX IV — RESTFUL WEB API GUIDELINES AND MODEL SERVICE CONTRACT

[Note: this set of guidelines will be completed for inclusion here in due course.]
Appendix

A model service contract following the design rules defined in this standard and based on the OAS (YAML) is provided
below. An IP Office will be able to download the OAS and slightly adapt it in order to implement its own API.

— Adraft OAS model contract: Service contract specification which outlines the business requirements and YAML
API Specification.

ANNEX'V - SOAP WEB API MODEL SERVICE CONTRACT

A model service contract following the design rules defined in this standard and based on WSDL is provided below. An IP
Office will be able to download the WSDL and slightly adapt it in order to implement its own API.

— Note: A draft WSDL model contract will be developed and added as a separate file in due course.


https://www.wipo.int/edocs/mdocs/classifications/en/cws_7/cws_7_4-annex2.docx
https://www.wipo.int/edocs/mdocs/classifications/en/cws_7/cws_7_4-appendix1.zip
https://www.wipo.int/edocs/mdocs/classifications/en/cws_7/cws_7_4-appendix1.zip

ANNEX VI - HIGH LEVEL SECURITY ARCHITECTURE BEST PRACTICES

CWS/7/3
MpunoxeHue |, ctp. 60

The security architecture defines the services and mechanisms that should be implemented to enforce defined policies and
rules while also providing a framework to further standardize and automate security. The core services and mechanisms of
this API Security Framework (the development portal, APl manager and API gateway) provide a grouping of functionality.
These functions can be delivered by discrete applications, bespoke code development, via COTS products or through
leveraging existing technologies that can be configured to provide these functions / services. Some of the functionality may
overlap or be combined into one or more products depending on the vendor used.

&)

Public

0

Partners

0

IP Offices

Consuming
application
developers

Identity Federation service

Mobile
device

iy

Browser

Using S

servers

Trusted PKI/ External CA @

Trust boundaries and perimeter controls

Publish
application that
consuyme APls

Consuming
Applications

Mobile App

Web App

J |

reate of App that consume AP|

Cross-certification or Trust relationship
I

13A0351Q
uopesyddy
Ja3s|8ay

API Developer
portal

Publish

Create APls

ontrols

£
T
o
T
&
0
@
=
m
°
i
N}
o
=
=

"""""""> Trusted PKI/ Internal CA

API manager

®Puh|ish

Access APIs

APl Gateway

P(‘P_p
O
2

Frontend
Server

Log Traffic

\Ge)
| —

APl monitoring, analyti-cs and policy definition

Identity Store

i (]
' e <f>
i g
E’o Internal APIs
o Developers
=
E Identity Federation service
o
&
3 API Developer < .
o
peris
Internal
A Application
H managel developers
AP| Gateway 10 o]
Backend
A4

Query and
transformation
Sl end NISTY
: dP
: LDAP
Business owner

& Security

D,

| S—

( o)

ey Store Identity Store

fl%

T
External

IPSEC Site-to-Site VPﬁ

|
DMz

T
Internal

E2ETLS1.2 Encryption

ESETLS1.3 Encryption

E2ETLS1.2 Encryption

The recommended security architecture SHOULD have the following API security services and mechanisms:

— A Web API portal to provide functions such as API discovery, APl analytics, access to specifications and
description including SLAs, social network and FAQs

— A Web API manager to provide centralized API administration and governance for API catalogues,
management of registration and on-boarding of various API developer communities, API lifecycle
management, application of pre-defined security profiles, and security policies lifecycle management.

— A Web API gateway to provide security automation capabilities including but not limited to centralized threat
protections, centralized API authentication, authorization, logging, security policy enforcement, message
encryption, monitoring, and analytics.

— A Web API monitoring and analytics service to provide functions such as advanced API services monitoring,
analytics, profile usage for security baselines, changes of usage and demand.

— A credential store to provide capabilities to securely store API keys, secrets, certificates, etc.

— Atrusted Certificate Authority (CA) to issue secure certificates and enable trust establishment between the
various Offices.

— A Security Information and Event Management system (SIEM) to enable security logs correlation and
advanced security analytics and monitoring.

— An Identity Provider to manage the identities stored in the LDAP directories and enable authentication.

ANNEX VII - HTTP STATUS CODES

It is important to align responses around the appropriate HTTP status code and to follow the standard HTTP codes. In
addition to an appropriate status code, there should be a useful and concise description of the error in the body of your
HTTP response. Responses should be specific and clear so consumers can come to a conclusion very quickly when using

the API.



CWS/7/3
MpunoxeHue |, cTp. 61

The set of HTTP status codes is defined on the basis of in REC7231. The status codes listed below should be used by an
API, where applicable.

The following response status code categories are defined:

— 1xx: Informational - Communicates transfer protocol-level information

—  2xx: Success - Indicates that the client's request was accepted successfully

— 3xx: Redirection - Indicates that the client must take some additional action in order to complete their request
— 4xx: Client Error - This category of error status codes points the finger at clients

—  5xx: Server Error - The server takes responsibility for these error status codes

The following table consolidates the HTTP Status Codes and provides references to the relative IETF RFCs.

Table 8: HTTP Status Codes

Value Description Reference
100 Continue [RFC7231, Section 6.2.1]
101 Switching Protocols [RFC7231, Section 6.2.2]
102 Processing [RFC2518]

103 Early Hints [RFC8297]

104-199 Unassigned
200 OK [RFC7231, Section 6.3.1]
201 Created [RFC7231, Section 6.3.2]
202 Accepted [RFC7231, Section 6.3.3]
203 Non-Authoritative Information [RFC7231, Section 6.3.4]
204 No Content [RFC7231, Section 6.3.5]
205 Reset Content [RFC7231, Section 6.3.6]
206 Partial Content [RFC7233, Section 4.1]
207 Multi-Status [RFC4918]
208 Already Reported [RFC5842]

209-225 Unassigned
226 IM Used [RFC3229]

227-299 Unassigned
300 Multiple Choices [RFC7231, Section 6.4.1]
301 Moved Permanently [RFC7231, Section 6.4.2]
302 Found [RFC7231, Section 6.4.3]
303 See Other [RFC7231, Section 6.4.4]
304 Not Modified [RFC7232, Section 4.1]
305 Use Proxy [RFC7231, Section 6.4.5]
306 (Unused) [RFC7231, Section 6.4.6]
307 Temporary Redirect [RFC7231, Section 6.4.7]
308 Permanent Redirect [RFC7538]

309-399 Unassigned
400 Bad Request [RFC7231, Section 6.5.1]
401 Unauthorized [RFC7235, Section 3.1]
402 Payment Required [RFC7231, Section 6.5.2]
403 Forbidden [RFC7231, Section 6.5.3]



http://www.iana.org/go/rfc7231

CWS/7/3

MpunoxeHue |, cTp. 62

Value Description Reference
404 Not Found [RFC7231, Section 6.5.4]
405 Method Not Allowed [RFC7231, Section 6.5.5]
406 Not Acceptable [RFC7231, Section 6.5.6]
407 Proxy Authentication Required [RFC7235, Section 3.2]
408 Request Timeout [RFC7231, Section 6.5.7]
409 Conflict [RFC7231, Section 6.5.8]
410 Gone [RFC7231, Section 6.5.9]
411 Length Required [RFC7231, Section 6.5.10]
412 Precondition Failed [RFC7232, Section 4.2][RFC8144, Section 3.2]
413 Payload Too Large [RFC7231, Section 6.5.11]
414 URI Too Long [RFC7231, Section 6.5.12]
415 Unsupported Media Type [RFC7231, Section 6.5.13][RFC7694, Section 3]
416 Range Not Satisfiable [RFC7233, Section 4.4]
417 Expectation Failed [RFC7231, Section 6.5.14]

418-420 Unassigned
421 Misdirected Request [RFC7540, Section 9.1.2]
422 Unprocessable Entity [RFC4918]
423 Locked [RFC4918]
424 Failed Dependency [RFC4918]
425 Unassigned
426 Upgrade Required [RFC7231, Section 6.5.15]
427 Unassigned
428 Precondition Required [RFC6585]
429 Too Many Requests [RFC6585]
430 Unassigned
431 Request Header Fields Too Large [RFC6585]

432-450 Unassigned
451 Unavailable For Legal Reasons [REC7725]

452-499 Unassigned
500 Internal Server Error [RFC7231, Section 6.6.1]
501 Not Implemented [RFC7231, Section 6.6.2]
502 Bad Gateway [RFC7231, Section 6.6.3]
503 Service Unavailable [RFC7231, Section 6.6.4]
504 Gateway Timeout [RFC7231, Section 6.6.5]
505 HTTP Version Not Supported [RFC7231, Section 6.6.6]
506 Variant Also Negotiates [RFC2295]
507 Insufficient Storage [RFC4918]
508 Loop Detected [RFC5842]
509 Unassigned
510 Not Extended [REC2774]
511 Network Authentication Required [RFC6585]

512-599 Unassigned




ANNEX VIl - REPRESENTATION TERMS
Table 9: Representation Terms

CWS/7/3
MpunoxeHue I, cTp. 63

Term

Definition

Data Type

Amount

A monetary value.

Number

Category

A specifically defined division or subset in a system of classification in
which all items share the same concept of taxonomy.

String

Code

A combination of one or more numbers, letters, or special characters,
which is substituted for a specific meaning. Represents finite,
predetermined values or free format.

String

Date

The notion of a specific point in time, expressed by year, month, and day.

String

Directory

Always preceded by PATH

String

Document

A CLOB stands for "character large object," which is a specific data type
for almost all databases. Quite simply, a CLOB is a pointer to text stored
outside of the table in a dedicated block. Used for XML documents.
Comprised of textual information of International Trademark Registration
being exchanged. XML tags identify the data items concerned with such
information. TIS - Madrid development team may define the attribute
XML_DOC as CLOB, pointer to Tagged Data stored outside of the table
in a dedicated block.

String

Identifier

A combination of one or more integers, letters, special characters which
uniquely identifies a specific instance of a business object, but which
may not have a readily definable meaning.

String

Indicator

A signal of the presence, absence, or requirement of something.
Recommended values are Y, N, and, “?” if needed.

Boolean

Measure

A measure is a numeric value determined by measuring an object along
with the specified unit of measure. MeasureType is used to represent a
kind of physical dimension such as temperature, length, speed, width,
weight, volume, latitude of an object. More precisely, MeasureType
should be used to measure intrinsic or physical properties of an object
seen as a whole.

Number

Name

The designation of an object expressed in a word or phrase.

String

Number

A string of numeral or alphanumeric characters expressing label, value,
quantity or identification.

Number, String

Percent

A number which represents a part of a whole, which will be divided
by 100.

Number

Quantity

A quantity is a counted number of non-monetary units, possibly including
fractions. Quantity is used to represent a counted number of things.
Quantity should be used for simple properties of an object seen as a
composite or collection or container to quantify or count its components.
Quantity should always express a counted number of things, and the
property will be such as total, shipped, loaded, stored. QuantityType
should be used for components that require unit information; and
xsd:nonNegativelInteger should be used for countable components
which do not need unit information.

Number




CWS/7/3
MpunoxeHue |, cTp. 64

Term Definition Data Type
Rate A quantity or amount measured in relation to another quantity or amount. | Number
Text An unformatted character string, generally in the form of words. String
(includes: Abbreviation, Comments.)
Time A designation of a specified chronological point within a period. Date
DateTime The captured date and time of an event when it occurs. Date
URI The Uniform Resource ldentifier that identifies where the file is located. String

[Mpunoxenue Il cneayet]



CWS/7/4
NPUNOXXEHWE 1l

ANNEX I

1.  The current DocList web service is part of the One Portal Dossier (OPD) Access services,
and returns a list of documents related to a particular application number, as provided by a
member of the IP5 Offices. Note that the DocList service does not return selected documents,
but rather only bibliographic information including document title, document creation date and
document type.

2. This specification also referred WIPO Case documentation. The current document is
intended as the basis of a WIPO CASE web service, in addition to the generated OAS

specification.

3. The following specification sets out the necessary requirements, for a similar web service,
which will serve as an example model for the new draft Web API standard. While OPD returns
responses compliant with ST.36, this updated specification will provide XML responses
compliant with WIPO ST.96. If required, an ST.36 format will also be specified. The primary
purpose of this document aims to provide a model example that will be incorporated in the new
WIPO Web API standard. It is also intended to assist IPOs in implementing the new Standard
for their web services.

RESOURCE NAME

4, Potentially the name of the resource could be:
/api/1.0/docLists

QUERY PARAMETERS
5.  Table 1 indicates the parameters passed through the URI that form the request to the

service.

Table 1: Query parameters

Query Type/Format | Example | Default Value Mandatory Description

Parameter

requesterl | String (max4 | JP <no default Yes Individual 1D at

ndividuall | chars) value> requester

dentifier organization

requester | String (String | OPD- <no default Yes Role at

RoleName | 20 chars) System value> Organization: free-

Examiner text
IB

requester | Enumeration: | JP <no default Yes ST.3 country code

Organizati | see ST.3 value> for requester

onName

document | ST.13 or ST.6 | AU20182 | <no default Yes Application

Number 44569 value> number requested
as defined in
ST.13 with
mandatory IP
Office code as
ST.30R
Publication
number as ST.6.



https://www.wipo.int/edocs/mdocs/classifications/en/cws_6/cws_6_6_corr.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-96-01.pdf

CWS/7/4

MpunoxeHwue I, cTp. 2

Query
Parameter

Type/Format

Example

Default Value

Mandatory

Description

countryCo
de

Enumeration:
see ST.3

AU

<no default
value>

No

ST.3 code
indicating filing
country. May be
redundant as this
is the first two
characters of the
application
number.

document
KindCateg
ory

Enumeration:
see Table 6

ALL

ALL

Yes

A list of the code
identifying the
types of
documents
returned. A new
type defined in
sapi namespace.

count

True|False

True

True

No

The number of
elements in a
collection that can
be accepted by
the consumer.

sort

String

documen
tDate ,
desc

documentDate,
desc

No

Multi-attribute
sorting criterion for
documents
returned

Note: there is a mapping of these document group codes to the WIPO Case document types
that is provided in the Appendix to this document.

RESPONSE

6.  The high-level structure of the response is in the form:

(a) DoclListsResponse identification information: OrganizationlID, OrganizationRole and
IPOfficeCode (located in sapi namespace) — see Table 2,

(b) Bibliographic information (pat:BibliographicData) - note this specification includes
only selected atomic elements were included. This list is provided in Table 2.

(c) AvailableDocumentBag (located in the sapi namespace) — see Table 3. This
element is comprised of O to n AvailableDocument elements and is of the type
AvailableDocumentBag Type.

(d) Transaction (located in the sapi namespace) — see Table 4.




CWS/7/4
MpunoxeHwue Il, cTp. 3

7. Table 2 and Example:

<sapi :DocListsResponse>
<sapi:Organizationl ID>EP</sapi:Organizationl 1D>
<sapi:OrganizationRole>EP</sapi :OrganizationRole>
<sapi: IPOCode>EP</sapi : IPOCode>
<pat:BibliographicData>

</pat:BibliographicData>
</sapi :DocListsResponse>

Table 3 provides a concordance of the proposed response body with corresponding elements of
ST96, as responses from the API should be in ST.96 format. Elements that are not available in
the current version of ST96 (3.1) have been created in a new namespace:
www.wipo.int/standards/XMLSchema/sAPI , where sAPI represents the Standard API
namespace. There can then be namespaces for each of the Web services that we intend to
implement created here. For instance, www.wipo.int/standards/XMLSchema/sAPI/DoclList .

8.  An English translation must be provided for documents supplied in the OPD web service
but both the original document and the translated documents are available in the file dossier.
As such, two attributes are required for the AvailableDocument element: originalLanguageCode
and currentLanguageCode. Finally a third attribute, identifies the means of the translation.

Table 2: Response parameters: sapi:DocListsResponse element

Response parameter ST.96/sapi element Description
OrganizationllD sapi:OrganizationlIDType Individual ID at the organization
minOccurs=1, maxOccurs=1
OrganizationRole com:RoleCategoryType Role at organization
minOccurs=1, maxOccurs=1
IPOCode com: IPOfficeCode ST3 code identifying the location
of the IPO
minOccurs=1, maxOccurs=1
BibliographicData pat:BibliographicData ST.96 response from offices
elements: which contains their

e Application Number | implementation of this ST.96
Publication Number | element. Could potentially be an
Invention Title ST.36 response as well.
Applicant minOccurs=1, maxOccurs=1

Inventor

Agent Name

WIPO No.

PCT No.

Filing Date
Application Status
Earliest Priority Date
First IPC Mark
Primary CPC mark



http://www.wipo.int/standards/XMLSchema/sAPI
http://www.wipo.int/standards/XMLSchema/sAPI/DocList

CWS/7/4
MpunoxeHue Il, cTp. 4

Example:

<sapi :DocListsResponse>
<sapi:Organizationl ID>EP</sapi:Organizationl ID>
<sapi :OrganizationRole>EP</sapi :OrganizationRole>
<sapi : IPOCode>EP</sapi : IPOCode>
<pat:BibliographicData>

</pat:BibliographicData>
</sapi :DocListsResponse>

Table 3: Response parameters — sAPI:AvailableDocument element

Response Parameter

ST.96/sapi element

Description

DocumentKindCode/Do
cumentKindCodeBag

sapi:DocumentKindCodeType
Element (token)

See Table 6 and Table 7.
Classifies type of document (as
defined by OPD/WIPO
Case/National Office)
minOccurs=1, maxOccurs=4

DocumentCategory/Do
cumentCategoryBag

sapi:DocumentCategoryType
Element (Enumeration)

The category of the document as
specified by the National Offices.
See Table 7.

minOccurs=0, maxOccurs=1

NPLIndicator

sapi:NPLIndicator
Element (xsd:Boolean)

A True/False Boolean flag that
indicates whether this document
is considered to be non-patent-
literature. Implemented similar
to com:Colourindicator.
minOccurs=0, maxOccurs=1

DocumentName com:DocumentName Specify the name of the
Element (string) document
minOccurs=1, maxOccurs=1
DocumentFormatCateg | com:DocumentFormatCategoryTy | Specify the format of the
oryBag pe document (eg. PDF or image

Element (Enumeration)

formats)
minOccurs=1, maxOccurs=5

Documentldentifier

sapi:DocContentldentifier/
com:DocumentURI
Element (string)

Specify the identifier to be used
in DocContent Web Service
Request (system identifier used
to connect two web services).
Could use ST.96 DocumentURI
potentially.

minOccurs=1, maxOccurs=1

DocumentDate

com:DocumentDate
Element (date)

Specify the legal date of the
document (YYYY-MM-DD)
minOccurs=0, maxOccurs=1

PageTotalQuantity

com:PageTotalQuantity
Element (integer)

Specify the total number of
pages within the document
minOccurs=0, maxOccurs=1

originalLanguageCode

com:ExtendedISOLanguageCode

Specify the original language

Type that the document was filed
Attribute MANDATORY

currentLanguageCode | com:ExtendedISOLanguageCode | Specify the current language of
Type the document

Attribute

MANDATORY




CWS/7/4
MpunoxeHwue Il, cTp. 5

Response Parameter ST.96/sapi element Description
translatorCategory pat:TranslatorCatgeoryType Specify how the translation was
Attribute performed. e.g., Human or
machine. OPTIONAL

Example:
<sapi :AvailableDocument com:originallLanguageCode="fr"
com:currentLanguageCode="en” pat:translatorCategory="Human’>
<sapi :DocumentCategoryBag>
<sapi :DocumentCategory>AU DRAWING</sapi :DocumentCategory>
<sapi :DocumentCategory>AU ABSTRACT</sapi :DocumentCategory>
</sapi :DocumentCategoryBag >
<sapi :DocumentKindCode>4</sapi :DocumentKindCode>
<sapi:NPLIndicator>false</sapi:NPLIndicator>
<com:DocumentName> Questions concernant la
demande</com:DocumentName>

<com:DocumentFormatCategory>application/pdf</com:DocumentFormatCategor

y>
<com:Documentldentifier>EM63EGK77322J03</com:Documentldentifier>
<com:DocumentDate>2008-03-26</com:DocumentDate>
<com:PageTotalQuantity>1</com:PageTotalQuantity>

</sapi :AvailableDocument>

Table 4: sapi.Transaction

Response Parameter XML element Description

TransactionError com:TransactionErrorType | In case of an error, an ST.96
XML error response is returned.
minOccurs=1, maxOccurs=1

page (limit, offset) tuples of <limit>,<offset> Implementation of pagination in
the response. ‘limit’ is the
number of items per page and
‘offset’ is the number of skipped
items. i.e., pagination criteria.
minOccurs=0, maxOccurs="?

sort tuples of <sorting criterion>, | How the contents list that forms
<sorting order> the response is sorted, i.e.,
sorting criteria.

minOccurs=0, maxOccurs="?

Example:

<sapi:Transaction>
<com:TransactionError>
<com:TransactionErrorCode>200</com:TransactionErrorCode>
<com:TransactionErrorText>0K</com: TransactionErrorText>
</com:TransactionError>
<page limit="10", offset="0" />
<sort by="documentDate” order="desc”/>
</sapi :Transaction>




CWS/7/4
MpunoxeHwue Il, cTp. 6

Table 5: HTTP Status Codes (from WIPO Web API Standard). For more information on
this error refer to TransactionError.

HTTP status code (from WIPO Web API
Standard, Annex VII)

Description

200 Request was successful

400 Bad Request.

404 Resource not found

408 Request timeout

414 URI too large

429 Too many requests

500 Internal Server error

503 Service Unavailable
USE CASES

UC1: UP-TO-DATE LIST RETURNED (SUCCESS)

Name

uCl1

User

DocList user

Goal

Return the list of documents associated with the application number [in
XML] according to the origin country

Assumptions

Application number is in DOCDB format

Content list is kept up-to-date by IP Office system
No authentication of user — or just use SSL?
Pagination is enabled

URL http://www.wipo.int/api/1.0/docLists/au2018210291 ?limit=10&offset=30
Request Query parameters within URL
Response XML (extended ST.96)
Query Application number=2018210291
parameters Limit=10
Offset=30
HTTP Verb GET

HTTP Header

status — see Table 5

arwpdE

Requester as identified by IID and role opens up interface

Requester enters application number, in DOCDB format

Request is made by source system to destination system for document contents list
Contents List is received by source system and returned as a response in ST96 format
Up-to-date contents list of documents relating to this application are displayed to the

user in desired format.

UC2: LIST NOT RETURN (ERROR)

Name

uc2

User

DoclList user

Goal

Return a standard XML error

Assumptions

Application number is in DOCDB format

Content list is kept up-to-date by IP Office system

Corresponds to an error code in Error! Reference source not found.
No authentication of user or just use SSL?

Pagination is enabled

URL

http://www.wipo.int/api/1.0/docLists/au2018210291?limit=10&offset=30

Request

Query parameters within URL



http://www.wipo.int/api/1.0/docLists/au2018210291?limit=10&offset=30
http://www.wipo.int/api/1.0/docLists/au2018210291?limit=10&offset=30

CWS/7/4
MpunoxeHwue Il, cTp. 7

Name uc2
Response XML (extended ST.96)
Query Application number=2018210291
parameters Limit=10
Offset=30
HTTP Verb GET
HTTP Header Status — see Table 5

1. Requester as identified by IIF and role opens up interface

2. Requester incorrectly enters in an application number

3. Application number forms basis of the request, along with requester information

4. ST96 response is a standard error indicating that the application number cannot be
found, the contents could not be retrieved, there is a delay in translation or the contents
list returned is too large (greater than 1000 pages). The values for the status code and
descriptions can be found in Table 5, which is a subset of Annex VIl of the new WIPO
Web API Standard (1).

REFERENCES

1. New WIPO Standard on Web API (Working Draft)

2. WIPO Standard for number of applications for Intellectual Property Rights
3. EPO DOCDB Reference

4. QOPD Specification

APPENDIX

9.  The following two tables are provided as reference material. They relate specifically to
WIPO-Case and OPD implementations of the DocList web service. The Document Type Code
is the code provided by the National IP Offices that identifies the type of document they are
supplying to WIPO-Case. The Document Group Code is a high-level categorization provided by
OPD that identifies broadly to the OPD user the type of document, indicated by color. For
example, Document Group Codes 1 and 4 are colored red, as incoming documents.

10. Note, that as the document code is generated by the national offices, WIPO proposes
standardization of document types, aligning them with category provided in WIPO ST.27. WIPO
may also propose further detail be added to the OPD Document Group Codes.

Table 6: OPD Document Group codes?

Document Kind Code Document Kind Description
1 Application Documents
2 Office Actions Communications. Includes All Documents that

are dispatched from office for refusal notification or
determination of patent etc... - Sent to applicant, OUTGOING —
Examiner communication not formality related i.e., Late Fee

3 Information Disclosures

4 Written Arguments

Opinions (USPTO Office Actions)

Papers received from applicants in response to the document
INCOMING

Include,es amendments

5 In-house documents including Examiner Notes/Search Results



https://www.wipo.int/edocs/mdocs/classifications/en/cws_6/cws_6_6_corr.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-13-01.pdf
https://www.epo.org/searching-for-patents/data/bulk-data-sets/docdb.html#tab-1
https://www3.wipo.int/confluence/download/attachments/484311095/OPD-Specifications-v1-0-0.doc?version=1&modificationDate=1543330648084&api=v2

CWS/7/4
MpunoxeHwue Il, cTp. 8

Document Kind Code Document Kind Description
21 First Office Action (substantive examination)
22 Intermediate Office Action (substantive examination)
23 Final Office Action, Decisions (substantive examination)
101 Documents including citations
102 Documents including classifications
unknown No document group defined for this document.
ALL Includes all the documents in the requested application

Table 7: WIPO CASE Document Type Code- OPD Document Group Code mapping

Document Group Code Document Type Code IPO
1 AU DRAWING IP AUSTRALIA
1 AU ABSTRACT IP AUSTRALIA
4 AU AMENDMENT IP AUSTRALIA
1 AU DESCRIPTION IP AUSTRALIA
1 AU CLAIM IP AUSTRALIA
1 AU CSEX IP AUSTRALIA
1 AU SPEC IP AUSTRALIA
AU EXRS IP AUSTRALIA
1 AU CORRO OUT IP AUSTRALIA
21,101,102,2 AU A15R IP AUSTRALIA
21,101,102,2 AU EXRP IP AUSTRALIA
101,102 AU SIST IP AUSTRALIA
1 CA DESCRIPTION CIPO
1 CA CLAIMS CIPO
1 CA ABSTRACT CIPO
1 CA DRAWINGS CIPO
CA
REQUESTFORCORRECTIONT
4 OAMENDMENT CIPO
4 CA AMENDMENT CIPO
4 CA REISSUE CIPO
CA
EXAMINATIONREINSTATEMEN
4 T CIPO
CA
EXTENSIONOFTIMEFOREXAMI
4 NATION CIPO
CA
AMENDMENTAFTERALLOWAN
4 CE CIPO
4 CA PROTEST/PRIORART CIPO
23 CA DISCLAIMER CIPO
4 CA FINALACTION-RESPONSE CIPO
CA RE-
4 EXAMINATIONREQUESTFILED | CIPO
CA
RESPONSETOREISSUEBOAR
4 DLETTER CIPO




CWS/7/4

MpunoxeHwue Il, cTp. 9

Document Group Code

Document Type Code

IPO

CA RE-
EXAMINATIONREQUESTFILED

4 SMALLENTITYDECL CIPO
CA
21,101, 102,2 R30(2) EXAMINERREQUISITION | CIPO
CA
2 R104EXAMINERREQUISITION | CIPO
CA
2,21,101,102 R29EXAMINERREQUISITION CIPO
23,101,102,2 CA FINALACTION CIPO
CA
ACKNOWLEDGEMENTOFREJE
2 CTIONOFAMENDMENT CIPO
CA
ACKNOWLEDGEMENTOFACC
2 EPTANCEOFAMENDMENT CIPO
CA RE-
2 EXAMINATIONREFUSED CIPO
CA
2 COMMISSIONER'SDECISION CIPO
CA
COMMISSIONER'SREFUSALLE
2 TTER CIPO
CA
2 R89EXAMINERREQUISITION CIPO
CA
2 R143EXAMINERREQUISITION | CIPO
2 CA PABLETTER CIPO
CA
INT.PRELIMINARYEXAMINATIO
101,102,2 NREPORT CIPO
1 CA SPEC CIPO
101,102 CA SRST CIPO
21,101,102,2 CA EXRP CIPO
1 CA CSEX CIPO
1 GB DESCRIPTION UKIPO
1 GB CLAIMS UKIPO
21,101,2 GB EXRP-OPINION UKIPO
1 GB CSEX-CLAIMS UKIPO
1 GB SPEC-DESC UKIPO
101,102,2 GB SRST-CORRSCH UKIPO
101,102,2 GB SRST-AMENSCH UKIPO
21,101,2 GB EXRP-EXAM UKIPO
101,102,2 GB SRST-FRTHSCH UKIPO
1,102 GB SPEC-BPUB UKIPO
1,101,102 GB SPEC-APUB UKIPO
1 GB CSEX-AMENCLM UKIPO
21,101,2 GB EXRP-ABBEXAM UKIPO
1 GB SPEC UKIPO
1 GB CSEX UKIPO
101,102,2 GB SRST UKIPO




CWS/7/4
MpunoxeHwue Il, cTp. 10

Document Group Code Document Type Code IPO
21,101,2 GB EXRP UKIPO
21,101,102,2 GB EXRP UKIPO
101,102 GB SRST UKIPO
1 IL DRAWINGS ILPO
1 IL DESCRIPTION ILPO
1 IL CLAIMS ILPO
2 IL SRSG ILPO
101,102,2 IL A15R ILPO
21,101,2 IL EXRP ILPO
1 IL SPEC ILPO
1 IL SEQUENCE_LISTING ILPO
21,101,102,2 IL EXRP ILPO
21,101,102,2 IL A15R ILPO
101,102 IL SIST ILPO
1 IL CSEX ILPO
1 IL EXRS ILPO
1 IL CORRO OUT ILPO
1,4 IN ABSTRACT CGPDTM
14 IN AFFIDAVIT CGPDTM
4 IN AGREEMENTS CGPDTM
4 IN AMENDMENT CGPDTM
4 IN ANNEXURES CGPDTM
4 IN ASSIGNMENT CGPDTM
2,23 IN CERTIFICATES CGPDTM
4 IN CERTIFIEDCOPY CGPDTM
1,4 IN CLAIMS CGPDTM
4 IN CORRESPONDENCE CGPDTM
4 IN DECLARATION CGPDTM
1,4 IN DESCRIPTION CGPDTM
1,4 IN DRAWINGS CGPDTM
4 IN EVIDENCE CGPDTM
2,21,22,101 IN EXAMREPORTIPO CGPDTM
2,21,22,101 IN EXRP CGPDTM
3,4 IN FOREIGNFILINGDETAILS CGPDTM
4 IN FORM CGPDTM
2,21,22,101 IN HEARINGDOCUMENTS CGPDTM
4 IN IPEAFORMS CGPDTM
4 IN ISAFORMS CGPDTM
4 IN INSPECTIONREQ CGPDTM
4 IN ISR CGPDTM
4 IN MARKEDCOPY CGPDTM
4 IN NOTIFICATIONLETTERS CGPDTM
4 IN NOTARIZEDCOPY CGPDTM
2,23 IN OFFICEACTION CGPDTM
4 IN OTHERDOCUMENTS CGPDTM
4 IN OTHERREQUESTS CGPDTM
4 IN OTHERS CGPDTM
4 IN PA CGPDTM
1,102 IN PCT CGPDTM
1,4 IN PCTFORMS CGPDTM




CWS/7/4

MpunoxeHwue I, cTp. 11

Document Group Code Document Type Code IPO
3,4 IN PCTPUBLICATION CGPDTM
4 IN POA CGPDTM
4 IN PETITION CGPDTM
4 IN PRIORITYDOCUMENT CGPDTM
4 IN PROOFOFRIGHT CGPDTM
3,4 IN PROSECUTIONHISTORY CGPDTM
4 IN REPLYTOEXAMREPORT CGPDTM
4 IN REQFORPOSTDATING CGPDTM
4 IN RESTOOFFICEACTIONS CGPDTM
1 IN SEQLIST CGPDTM
4 IN STATEMENTS CGPDTM
4 IN TRANSLATION CGPDTM
4 IN UNDERTAKING CGPDTM
4 IN VERIFIEDCOPIES CGPDTM
IN
4 WITHDRAWALCORRESPONDE | CGPDTM
NCE
3,4 IN WRITTENSUBMISSIONS CGPDTM
1,4 IN SPECIFICATION CGPDTM
1 PCT A19CL PCT
1 PCT A19LT PCT
1 PCT A19PR PCT
1 PCT A19PU PCT
1 PCT ABSTR PCT
1 PCT ACCPY PCT
1 PCT ACSMT PCT
1 PCT AMCLS PCT
1 PCT APBDY PCT
1 PCT APBNP PCT
1 PCT APBRS PCT
1 PCT ART19 PCT
1 PCT BSPD PCT
1 PCT CLAIM PCT
1 PCT DESCR PCT
1 PCT DRAWI PCT
1 PCT EAPP PCT
1 PCT EAPS PCT
1 PCT ETABS PCT
1 PCT ETAPB PCT
1 PCT ETCLM PCT
1 PCT ETDES PCT
1 PCT ETDRW PCT
1 PCT ISSQ PCT
1 PCT ISSS PCT
1 PCT ISST PCT
1 PCT ISSU PCT
1 PCT ISSV PCT
1 PCT ISSW PCT
1 PCT PCCOM PCT
1 PCT PDOC PCT




CWS/7/4

MpunoxeHwue I, cTp. 12

Document Group Code Document Type Code IPO
1 PCT SRBTR PCT
1 PCT TEAPP PCT
1 PCT TEAPS PCT
1 PCT TPDOC PCT
2 PCT CDESR PCT
2 PCT IP2SL PCT
2 PCT SRSTR PCT
2 PCT SSNEE PCT
2 PCT TPOBS PCT
4 PCT 3PCOR PCT
4 PCT ACOBS PCT
4 PCT APCOR PCT
4 PCT APOBC PCT
4 PCT APOBS PCT
4 PCT WOSAC PCT
1,102 PCT PAMPH PCT
101,2 PCT SS501 PCT
101,2 PCT SSET PCT
101,2 PCT SSTR PCT
21,101,102,2 PCT ESR PCT
21,101,102,2 PCT ETISR PCT
21,101,102,2 PCT ISR PCT
21,101,102,2 PCT ISRNO PCT
2,101,102,2 PCT ITSR PCT
2,101,102,3 PCT ROESR PCT
2,101,102,4 PCT TESR PCT
21,102,2 PCT A172A PCT
21,102,3 PCT ETAL17 PCT
21,102,4 PCT ETWOS PCT
21,102,5 PCT WOSA PCT
21,102,6 PCT WOSAR PCT
21,102,7 PCT WOSNO PCT
23,102,2 PCT BSEI PCT
23,102,3 PCT BSIP PCT
23,1024 PCT ETIP1 PCT
23,102,5 PCT ETIP2 PCT
23,102,6 PCT ETIPE PCT
23,102,7 PCT IPER PCT
23,102,8 PCT IPR2R PCT
23,102,9 PCT IPRP1 PCT
23,102,10 PCT IPRP2 PCT
23,2 PCT IPRP PCT
102 PCT IASR PCT
102 PCT PAMPHLET PCT
4 JP A51 JPO
4 JP A521 JPO
4 JP A5210 JPO
4 JP A5211 JPO
4 JP A5212 JPO
4 JP A522 JPO




CWS/7/4

MpunoxeHwue Il, cTp. 13

Document Group Code

Document Type Code

IPO

4 JP A523 JPO
4 JP A524 JPO
4 JP A525 JPO
4 JP A526 JPO
4 JP A527 JPO
4 JP A528 JPO
4 JP A529 JPO
4 JP AS53 JPO
4 JP A55 JPO
4 JP A59 JPO
4 JP A601 JPO
4 JP A603 JPO
4 JP A621 JPO
4 JP A623 JPO
4 JP A624 JPO
4 JP A625 JPO
4 JP A626 JPO
4 JP A627 JPO
4,1 JP A63 JPO
4,1 JP A63 JPO
4,1 JP A631 JPO
4,1 JP A632 JPO
4,1 JP A633 JPO
4,1 JP A6330 JPO
4,1 JP A6331 JPO
4,1 JP A6332 JPO
4,1 JP A6333 JPO
4,1 JP A6333 JPO
4,1 JP A634 JPO
4,1 JP A6340 JPO
4,1 JP A6341 JPO
4,1 JP A6342 JPO
4,1 JP A6343 JPO
4 JP A635 JPO
4 JP A67 JPO
4 JP A681 JPO
4 JP A691 JPO
4 JP A711 JPO
4 JP A712 JPO
4 JP A7421 JPO
4 JP A7422 JPO
4 JP A7423 JPO
4 JP A7424 JPO
4 JP A7425 JPO
4 JP A7426 JPO
4 JP A7427 JPO
4 JP A7428 JPO
4 JP A7431 JPO
4 JP A7432 JPO
4 JP A7433 JPO




CWS/7/4
MpunoxeHwue I, cTp. 14

Document Group Code Document Type Code IPO
4 JP A7434 JPO
4 JP A7435 JPO
4 JP A7436 JPO
4 JP A7437 JPO
4 JP A761 JPO
4 JP A762 JPO
4 JP A764 JPO
4 JP A765 JPO
4 JP A781 JPO
4 JP A79 JPO
4 JP A791 JPO
4 JP A792 JPO
4 JP A80 JPO
4 JP A801 JPO
4 JP A81 JPO
4 JP A82 JPO
4 JP A821 JPO
4 JP A822 JPO
4 JP A831 JPO
4 JP A87 JPO
4 JP A871 JPO
4 JP A872 JPO
4 JP A881 JPO
4 JP A914 JPO
4 JP A915 JPO
4 JP A915 JPO
4 JP A916 JPO
4 JP 1B101 JPO
4 JP IB101J JPO
4,101,102 JP IB210 JPO
4,101,102 JP 1B21J JPO
4 JP 1B304 JPO
4 JP IB305 JPO
4 JP IB306 JPO
4 JP IB307 JPO
4 JP IB310 JPO
4 JP IB317 JPO
4 JP IB318 JPO
4 JP IB31A JPO
4 JP IB31B JPO
4 JP IB31B1 JPO
4 JP IB31C JPO
4 JP IB31C1 JPO
4,101,102 JP IB31E JPO
4,101,102 JP IB31J JPO
4 JP 1B324 JPO
4 JP IB325 JPO
4 JP IB331 JPO
4 JP IB334 JPO
4 JP IB335 JPO




CWS/7/4
MpunoxeHwue I, cTp. 15

Document Group Code Document Type Code IPO
4,101,102 JP IB338 JPO
4 JP IB339 JPO
4 JP 1B345 JPO
4 JP 1B346 JPO
4,1,102 JP IB349 JPO
4.1 JP IB3491 JPO
4,1 JP 1B3492 JPO
4,1 JP 1B3493 JPO
4,1 JP 1B3494 JPO
4.1 JP IB3495 JPO
4 JP IB350 JPO
4 JP IB369 JPO
4 JP IB373 JPO
4 JP IB3731 JPO
4 JP IB374 JPO
4 JP IB399 JPO
4 JP IB500 JPO
4 JP IB501 JPO
4 JP IB502 JPO
4 JP IBC101 JPO
4,101,102 JP IBC210 JPO
4,101,102 JP IBC21J JPO
4 JP IBC304 JPO
4 JP IBC305 JPO
4 JP IBC306 JPO
4 JP IBC307 JPO
4 JP IBC310 JPO
4 JP IBC317 JPO
4 JP IBC31B JPO
4 JP IBC31C JPO
4,101,102 JP IBC31E JPO
4,101,102 JP IBC31J JPO
4 JP IBC324 JPO
4 JP IBC325 JPO
4 JP IBC331 JPO
4 JP IBC334 JPO
4,101,102 JP IBC338 JPO
4 JP IBC339 JPO
4 JP IBC345 JPO
4,102 JP IBC349 JPO
4 JP IBC350 JPO
2,21,23,101,102 JP AO1 JPO
2,21,23,101,103 JP A0l JPO
2,23,101 JP A02 JPO
2 JP A031 JPO
2 JP A032 JPO
2 JP A033 JPO

[JononHeHue cnenyeT]



CWS/7/4
OOMNONHEHWVE

APPENDIX

Draft OAS API specification:
(https://www.wipo.int/edocs/mdocs/classifications/en/cws 7/cws 7 4-appendixl.zip)



https://www.wipo.int/edocs/mdocs/classifications/en/cws_7/cws_7_4-appendix1.zip

	ВВЕДЕНИЕ
	ПЕРЕСМОТР РАБОЧЕГО ПРОЕКТА СТАНДАРТА
	Направления разработки
	Нерешенные вопросы

	ПРЕДЛОЖЕНИЕ ОБ ИЗМЕНЕНИИ ОПИСАНИЯ ЗАДАЧИ № 56
	ПРИЛОЖЕНИЕ I
	1. INTRODUCTION
	2. DEFINITIONS AND TERMINOLOGY
	3. Notations
	3.1. General notations
	3.2. Rule identifiers

	4. SCOPE
	5. WEB API DESIGN PRINCIPLES
	6. RESTFUL WEB API
	6.1. URI Components
	6.2. Status Codes
	6.2.1 Pick-and-choose Principle

	6.3. Resource Model
	6.4. Supporting multiple formats
	6.5. HTTP Methods
	GET
	HEAD
	POST
	PUT
	PATCH
	DELETE
	TRACE
	OPTIONS

	6.6. Data Query Patterns
	Pagination Options
	Sorting
	Expand
	Number of Items
	Complex Search Expressions

	6.7. Error Handling
	Error Payload
	Correlation ID

	6.8. Service Contract
	6.9. Time-out
	6.10. State Management
	Response Versioning
	Caching
	Managed File Transfer

	6.11. Preference Handling
	6.12. Translation
	6.13. Long-Running Operations
	6.14. Security Model
	General Rules
	Guidelines for secure and threat-resistant API management
	Encryption, Integrity and non-repudiation
	Authentication and Authorization
	Availability and threat protection
	Cross-domain Requests

	6.15. API Maturity Model

	7. SOAP WEB API
	7.1. General Rules
	7.2. Schemas
	7.3. Naming and Versioning
	7.4. Web Service Contract Design
	7.5. Attaching Policies to WSDL Definitions
	7.6. SOAP – Web Service Security

	8. Data Type Formats
	9. CONFORMANCE
	10. REFERENCES
	WIPO Standards
	Standards and Conventions
	IP Offices’ REST APIs
	Industry REST APIs and Design Guidelines
	Others

	ANNEX I - LIST OF RESTful WEB SERVICE DESIGN RULES AND CONVENTIONS
	ANNEX II – REST IP Vocabulary
	ANNEX III - LIST OF SOAP Web API NAMES
	ANNEX IV – RESTFUL WEB API GUIDELINES AND MODEL SERVICE CONTRACT
	Appendix

	ANNEX V - SOAP WEB API MODEL SERVICE CONTRACT
	ANNEX VI – HIGH LEVEL SECURITY ARCHITECTURE BEST PRACTICES
	ANNEX VII – HTTP STATUS CODES
	ANNEX VIII – REPRESENTATION TERMS

	ПРИЛОЖЕНИЕ II
	ANNEX II
	RESOURCE NAME
	QUERY PARAMETERS
	RESPONSE
	USE CASES
	UC1: UP-TO-DATE LIST RETURNED (SUCCESS)
	UC2: LIST NOT RETURN (ERROR)

	REFERENCES
	APPENDIX

	APPENDIX


